

Digital Electronics

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

Digital Electronics
Principles, Devices and Applications

Anil K. Maini
Defence Research and Development Organization (DRDO), India

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone �+44� 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons
Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, Canada L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

Library of Congress Cataloging in Publication Data

Maini, Anil Kumar.
Digital electronics : principles, devices, and applications / Anil Kumar Maini.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-03214-5 (Cloth)
1. Digital electronics. I. Title.
TK7868.D5M275 2007
621.381—dc22 2007020666

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-03214-5 (HB)

Typeset in 9/11pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which
at least two trees are planted for each one used for paper production.

In the loving memory of my father, Shri Sukhdev Raj Maini, who has been a source of
inspiration, courage and strength to me to face all challenges in life, and above all instilled

in me the value of helping people to make this world a better place.

Anil K. Maini

Contents

Preface xxi

1 Number Systems 1
1.1 Analogue Versus Digital 1
1.2 Introduction to Number Systems 2
1.3 Decimal Number System 2
1.4 Binary Number System 3

1.4.1 Advantages 3
1.5 Octal Number System 4
1.6 Hexadecimal Number System 4
1.7 Number Systems – Some Common Terms 4

1.7.1 Binary Number System 4
1.7.2 Decimal Number System 5
1.7.3 Octal Number System 5
1.7.4 Hexadecimal Number System 5

1.8 Number Representation in Binary 5
1.8.1 Sign-Bit Magnitude 5
1.8.2 1’s Complement 6
1.8.3 2’s Complement 6

1.9 Finding the Decimal Equivalent 6
1.9.1 Binary-to-Decimal Conversion 6
1.9.2 Octal-to-Decimal Conversion 6
1.9.3 Hexadecimal-to-Decimal Conversion 7

1.10 Decimal-to-Binary Conversion 7
1.11 Decimal-to-Octal Conversion 8
1.12 Decimal-to-Hexadecimal Conversion 9
1.13 Binary–Octal and Octal–Binary Conversions 9
1.14 Hex–Binary and Binary–Hex Conversions 10
1.15 Hex–Octal and Octal–Hex Conversions 10
1.16 The Four Axioms 11
1.17 Floating-Point Numbers 12

1.17.1 Range of Numbers and Precision 13
1.17.2 Floating-Point Number Formats 13

viii Contents

Review Questions 17
Problems 17
Further Reading 18

2 Binary Codes 19
2.1 Binary Coded Decimal 19

2.1.1 BCD-to-Binary Conversion 20
2.1.2 Binary-to-BCD Conversion 20
2.1.3 Higher-Density BCD Encoding 21
2.1.4 Packed and Unpacked BCD Numbers 21

2.2 Excess-3 Code 21
2.3 Gray Code 23

2.3.1 Binary–Gray Code Conversion 24
2.3.2 Gray Code–Binary Conversion 25
2.3.3 n-ary Gray Code 25
2.3.4 Applications 25

2.4 Alphanumeric Codes 27
2.4.1 ASCII code 28
2.4.2 EBCDIC code 31
2.4.3 Unicode 37

2.5 Seven-segment Display Code 38
2.6 Error Detection and Correction Codes 40

2.6.1 Parity Code 41
2.6.2 Repetition Code 41
2.6.3 Cyclic Redundancy Check Code 41
2.6.4 Hamming Code 42
Review Questions 44
Problems 45
Further Reading 45

3 Digital Arithmetic 47
3.1 Basic Rules of Binary Addition and Subtraction 47
3.2 Addition of Larger-Bit Binary Numbers 49

3.2.1 Addition Using the 2’s Complement Method 49
3.3 Subtraction of Larger-Bit Binary Numbers 52

3.3.1 Subtraction Using 2’s Complement Arithmetic 53
3.4 BCD Addition and Subtraction in Excess-3 Code 57

3.4.1 Addition 57
3.4.2 Subtraction 57

3.5 Binary Multiplication 58
3.5.1 Repeated Left-Shift and Add Algorithm 59
3.5.2 Repeated Add and Right-Shift Algorithm 59

3.6 Binary Division 60
3.6.1 Repeated Right-Shift and Subtract Algorithm 61
3.6.2 Repeated Subtract and Left-Shift Algorithm 62

3.7 Floating-Point Arithmetic 64
3.7.1 Addition and Subtraction 65
3.7.2 Multiplication and Division 65

Contents ix

Review Questions 67
Problems 68
Further Reading 68

4 Logic Gates and Related Devices 69
4.1 Positive and Negative Logic 69
4.2 Truth Table 70
4.3 Logic Gates 71

4.3.1 OR Gate 71
4.3.2 AND Gate 73
4.3.3 NOT Gate 75
4.3.4 EXCLUSIVE-OR Gate 76
4.3.5 NAND Gate 79
4.3.6 NOR Gate 79
4.3.7 EXCLUSIVE-NOR Gate 80
4.3.8 INHIBIT Gate 82

4.4 Universal Gates 85
4.5 Gates with Open Collector/Drain Outputs 85
4.6 Tristate Logic Gates 87
4.7 AND-OR-INVERT Gates 87
4.8 Schmitt Gates 88
4.9 Special Output Gates 91
4.10 Fan-Out of Logic Gates 95
4.11 Buffers and Transceivers 98
4.12 IEEE/ANSI Standard Symbols 100

4.12.1 IEEE/ANSI Standards – Salient Features 100
4.12.2 ANSI Symbols for Logic Gate ICs 101

4.13 Some Common Applications of Logic Gates 102
4.13.1 OR Gate 103
4.13.2 AND Gate 104
4.13.3 EX-OR/EX-NOR Gate 104
4.13.4 Inverter 105

4.14 Application-Relevant Information 107
Review Questions 109
Problems 110
Further Reading 114

5 Logic Families 115
5.1 Logic Families – Significance and Types 115

5.1.1 Significance 115
5.1.2 Types of Logic Family 116

5.2 Characteristic Parameters 118
5.3 Transistor Transistor Logic (TTL) 124

5.3.1 Standard TTL 125
5.3.2 Other Logic Gates in Standard TTL 127
5.3.3 Low-Power TTL 133
5.3.4 High-Power TTL (74H/54H) 134
5.3.5 Schottky TTL (74S/54S) 135

x Contents

5.3.6 Low-Power Schottky TTL (74LS/54LS) 136
5.3.7 Advanced Low-Power Schottky TTL (74ALS/54ALS) 137
5.3.8 Advanced Schottky TTL (74AS/54AS) 139
5.3.9 Fairchild Advanced Schottky TTL (74F/54F) 140
5.3.10 Floating and Unused Inputs 141
5.3.11 Current Transients and Power Supply Decoupling 142

5.4 Emitter Coupled Logic (ECL) 147
5.4.1 Different Subfamilies 147
5.4.2 Logic Gate Implementation in ECL 148
5.4.3 Salient Features of ECL 150

5.5 CMOS Logic Family 151
5.5.1 Circuit Implementation of Logic Functions 151
5.5.2 CMOS Subfamilies 165

5.6 BiCMOS Logic 170
5.6.1 BiCMOS Inverter 171
5.6.2 BiCMOS NAND 171

5.7 NMOS and PMOS Logic 172
5.7.1 PMOS Logic 173
5.7.2 NMOS Logic 174

5.8 Integrated Injection Logic (I2L) Family 174
5.9 Comparison of Different Logic Families 176
5.10 Guidelines to Using TTL Devices 176
5.11 Guidelines to Handling and Using CMOS Devices 179
5.12 Interfacing with Different Logic Families 179

5.12.1 CMOS-to-TTL Interface 179
5.12.2 TTL-to-CMOS Interface 180
5.12.3 TTL-to-ECL and ECL-to-TTL Interfaces 180
5.12.4 CMOS-to-ECL and ECL-to-CMOS Interfaces 183

5.13 Classification of Digital ICs 183
5.14 Application-Relevant Information 184

Review Questions 185
Problems 185
Further Reading 187

6 Boolean Algebra and Simplification Techniques 189
6.1 Introduction to Boolean Algebra 189

6.1.1 Variables, Literals and Terms in Boolean Expressions 190
6.1.2 Equivalent and Complement of Boolean Expressions 190
6.1.3 Dual of a Boolean Expression 191

6.2 Postulates of Boolean Algebra 192
6.3 Theorems of Boolean Algebra 192

6.3.1 Theorem 1 (Operations with ‘0’ and ‘1’) 192
6.3.2 Theorem 2 (Operations with ‘0’ and ‘1’) 193
6.3.3 Theorem 3 (Idempotent or Identity Laws) 193
6.3.4 Theorem 4 (Complementation Law) 193
6.3.5 Theorem 5 (Commutative Laws) 194
6.3.6 Theorem 6 (Associative Laws) 194
6.3.7 Theorem 7 (Distributive Laws) 195

Contents xi

6.3.8 Theorem 8 196
6.3.9 Theorem 9 197
6.3.10 Theorem 10 (Absorption Law or Redundancy Law) 197
6.3.11 Theorem 11 197
6.3.12 Theorem 12 (Consensus Theorem) 198
6.3.13 Theorem 13 (DeMorgan’s Theorem) 199
6.3.14 Theorem 14 (Transposition Theorem) 200
6.3.15 Theorem 15 201
6.3.16 Theorem 16 201
6.3.17 Theorem 17 (Involution Law) 202

6.4 Simplification Techniques 204
6.4.1 Sum-of-Products Boolean Expressions 204
6.4.2 Product-of-Sums Expressions 205
6.4.3 Expanded Forms of Boolean Expressions 206
6.4.4 Canonical Form of Boolean Expressions 206
6.4.5 � and � Nomenclature 207

6.5 Quine–McCluskey Tabular Method 208
6.5.1 Tabular Method for Multi-Output Functions 212

6.6 Karnaugh Map Method 216
6.6.1 Construction of a Karnaugh Map 216
6.6.2 Karnaugh Map for Boolean Expressions with a Larger Number of

Variables 222
6.6.3 Karnaugh Maps for Multi-Output Functions 225
Review Questions 230
Problems 230
Further Reading 231

7 Arithmetic Circuits 233
7.1 Combinational Circuits 233
7.2 Implementing Combinational Logic 235
7.3 Arithmetic Circuits – Basic Building Blocks 236

7.3.1 Half-Adder 236
7.3.2 Full Adder 237
7.3.3 Half-Subtractor 240
7.3.4 Full Subtractor 242
7.3.5 Controlled Inverter 244

7.4 Adder–Subtractor 245
7.5 BCD Adder 246
7.6 Carry Propagation–Look-Ahead Carry Generator 254
7.7 Arithmetic Logic Unit (ALU) 260
7.8 Multipliers 260
7.9 Magnitude Comparator 261

7.9.1 Cascading Magnitude Comparators 263
7.10 Application-Relevant Information 266

Review Questions 266
Problems 267
Further Reading 268

xii Contents

8 Multiplexers and Demultiplexers 269
8.1 Multiplexer 269

8.1.1 Inside the Multiplexer 271
8.1.2 Implementing Boolean Functions with

Multiplexers 273
8.1.3 Multiplexers for Parallel-to-Serial Data Conversion 277
8.1.4 Cascading Multiplexer Circuits 280

8.2 Encoders 280
8.2.1 Priority Encoder 281

8.3 Demultiplexers and Decoders 285
8.3.1 Implementing Boolean Functions with Decoders 286
8.3.2 Cascading Decoder Circuits 288

8.4 Application-Relevant Information 293
Review Questions 294
Problems 295
Further Reading 298

9 Programmable Logic Devices 299
9.1 Fixed Logic Versus Programmable Logic 299

9.1.1 Advantages and Disadvantages 301
9.2 Programmable Logic Devices – An Overview 302

9.2.1 Programmable ROMs 302
9.2.2 Programmable Logic Array 302
9.2.3 Programmable Array Logic 304
9.2.4 Generic Array Logic 305
9.2.5 Complex Programmable Logic Device 306
9.2.6 Field-Programmable Gate Array 307

9.3 Programmable ROMs 308
9.4 Programmable Logic Array 312
9.5 Programmable Array Logic 317

9.5.1 PAL Architecture 319
9.5.2 PAL Numbering System 320

9.6 Generic Array Logic 325
9.7 Complex Programmable Logic Devices 328

9.7.1 Internal Architecture 328
9.7.2 Applications 330

9.8 Field-Programmable Gate Arrays 331
9.8.1 Internal Architecture 331
9.8.2 Applications 333

9.9 Programmable Interconnect Technologies 333
9.9.1 Fuse 334
9.9.2 Floating-Gate Transistor Switch 334
9.9.3 Static RAM-Controlled Programmable Switches 335
9.9.4 Antifuse 335

9.10 Design and Development of Programmable Logic Hardware 337
9.11 Programming Languages 338

9.11.1 ABEL-Hardware Description Language 339
9.11.2 VHDL-VHSIC Hardware Description Language 339

Contents xiii

9.11.3 Verilog 339
9.11.4 Java HDL 340

9.12 Application Information on PLDs 340
9.12.1 SPLDs 340
9.12.2 CPLDs 343
9.12.3 FPGAs 349
Review Questions 352
Problems 353
Further Reading 355

10 Flip-Flops and Related Devices 357
10.1 Multivibrator 357

10.1.1 Bistable Multivibrator 357
10.1.2 Schmitt Trigger 358
10.1.3 Monostable Multivibrator 360
10.1.4 Astable Multivibrator 362

10.2 Integrated Circuit (IC) Multivibrators 363
10.2.1 Digital IC-Based Monostable Multivibrator 363
10.2.2 IC Timer-Based Multivibrators 363

10.3 R-S Flip-Flop 373
10.3.1 R-S Flip-Flop with Active LOW Inputs 374
10.3.2 R-S Flip-Flop with Active HIGH Inputs 375
10.3.3 Clocked R-S Flip-Flop 377

10.4 Level-Triggered and Edge-Triggered Flip-Flops 381
10.5 J -K Flip-Flop 382

10.5.1 J -K Flip-Flop with PRESET and CLEAR Inputs 382
10.5.2 Master–Slave Flip-Flops 382

10.6 Toggle Flip-Flop (T Flip-Flop) 390
10.6.1 J-K Flip-Flop as a Toggle Flip-Flop 391

10.7 D Flip-Flop 394
10.7.1 J -K Flip-Flop as D Flip-Flop 395
10.7.2 D Latch 395

10.8 Synchronous and Asynchronous Inputs 398
10.9 Flip-Flop Timing Parameters 399

10.9.1 Set-Up and Hold Times 399
10.9.2 Propagation Delay 399
10.9.3 Clock Pulse HIGH and LOW Times 401
10.9.4 Asynchronous Input Active Pulse Width 401
10.9.5 Clock Transition Times 402
10.9.6 Maximum Clock Frequency 402

10.10 Flip-Flop Applications 402
10.10.1 Switch Debouncing 402
10.10.2 Flip-Flop Synchronization 404
10.10.3 Detecting the Sequence of Edges 404

10.11 Application-Relevant Data 407
Review Questions 408
Problems 409
Further Reading 410

xiv Contents

11 Counters and Registers 411
11.1 Ripple (Asynchronous) Counter 411

11.1.1 Propagation Delay in Ripple Counters 412
11.2 Synchronous Counter 413
11.3 Modulus of a Counter 413
11.4 Binary Ripple Counter – Operational Basics 413

11.4.1 Binary Ripple Counters with a Modulus of Less than 2N 416
11.4.2 Ripple Counters in IC Form 418

11.5 Synchronous (or Parallel) Counters 423
11.6 UP/DOWN Counters 425
11.7 Decade and BCD Counters 426
11.8 Presettable Counters 426

11.8.1 Variable Modulus with Presettable Counters 428
11.9 Decoding a Counter 428
11.10 Cascading Counters 433

11.10.1 Cascading Binary Counters 433
11.10.2 Cascading BCD Counters 435

11.11 Designing Counters with Arbitrary Sequences 438
11.11.1 Excitation Table of a Flip-Flop 438
11.11.2 State Transition Diagram 439
11.11.3 Design Procedure 439

11.12 Shift Register 447
11.12.1 Serial-In Serial-Out Shift Register 449
11.12.2 Serial-In Parallel-Out Shift Register 452
11.12.3 Parallel-In Serial-Out Shift Register 452
11.12.4 Parallel-In Parallel-Out Shift Register 453
11.12.5 Bidirectional Shift Register 455
11.12.6 Universal Shift Register 455

11.13 Shift Register Counters 459
11.13.1 Ring Counter 459
11.13.2 Shift Counter 460

11.14 IEEE/ANSI Symbology for Registers and Counters 464
11.14.1 Counters 464
11.14.2 Registers 466

11.15 Application-Relevant Information 466
Review Questions 466
Problems 469
Further Reading 471

12 Data Conversion Circuits – D/A and A/D Converters 473
12.1 Digital-to-Analogue Converters 473

12.1.1 Simple Resistive Divider Network for D/A Conversion 474
12.1.2 Binary Ladder Network for D/A Conversion 475

12.2 D/A Converter Specifications 476
12.2.1 Resolution 476
12.2.2 Accuracy 477
12.2.3 Conversion Speed or Settling Time 477
12.2.4 Dynamic Range 478

Contents xv

12.2.5 Nonlinearity and Differential Nonlinearity 478
12.2.6 Monotonocity 478

12.3 Types of D/A Converter 479
12.3.1 Multiplying D/A Converters 479
12.3.2 Bipolar-Output D/A Converters 480
12.3.3 Companding D/A Converters 480

12.4 Modes of Operation 480
12.4.1 Current Steering Mode of Operation 480
12.4.2 Voltage Switching Mode of Operation 481

12.5 BCD-Input D/A Converter 482
12.6 Integrated Circuit D/A Converters 486

12.6.1 DAC-08 486
12.6.2 DAC-0808 487
12.6.3 DAC-80 487
12.6.4 AD 7524 489
12.6.5 DAC-1408/DAC-1508 489

12.7 D/A Converter Applications 490
12.7.1 D/A Converter as a Multiplier 490
12.7.2 D/A converter as a Divider 490
12.7.3 Programmable Integrator 491
12.7.4 Low-Frequency Function Generator 492
12.7.5 Digitally Controlled Filters 493

12.8 A/D Converters 495
12.9 A/D Converter Specifications 495

12.9.1 Resolution 495
12.9.2 Accuracy 496
12.9.3 Gain and Offset Errors 496
12.9.4 Gain and Offset Drifts 496
12.9.5 Sampling Frequency and Aliasing Phenomenon 496
12.9.6 Quantization Error 496
12.9.7 Nonlinearity 497
12.9.8 Differential Nonlinearity 497
12.9.9 Conversion Time 498
12.9.10 Aperture and Acquisition Times 498
12.9.11 Code Width 499

12.10 A/D Converter Terminology 499
12.10.1 Unipolar Mode Operation 499
12.10.2 Bipolar Mode Operation 499
12.10.3 Coding 499
12.10.4 Low Byte and High Byte 499
12.10.5 Right-Justified Data, Left-Justified Data 499
12.10.6 Command Register, Status Register 500
12.10.7 Control Lines 500

12.11 Types of A/D Converter 500
12.11.1 Simultaneous or Flash A/D Converters 500
12.11.2 Half-Flash A/D Converter 503
12.11.3 Counter-Type A/D Converter 504
12.11.4 Tracking-Type A/D Converter 505

xvi Contents

12.11.5 Successive Approximation Type A/D Converter 505
12.11.6 Single-, Dual- and Multislope A/D Converters 506
12.11.7 Sigma-Delta A/D Converter 509

12.12 Integrated Circuit A/D Converters 513
12.12.1 ADC-0800 513
12.12.2 ADC-0808 514
12.12.3 ADC-80/AD ADC-80 515
12.12.4 ADC-84/ADC-85/AD ADC-84/AD ADC-85/AD-5240 516
12.12.5 AD 7820 516
12.12.6 ICL 7106/ICL 7107 517

12.13 A/D Converter Applications 520
12.13.1 Data Acquisition 521
Review Questions 522
Problems 523
Further Reading 523

13 Microprocessors 525
13.1 Introduction to Microprocessors 525
13.2 Evolution of Microprocessors 527
13.3 Inside a Microprocessor 528

13.3.1 Arithmetic Logic Unit (ALU) 529
13.3.2 Register File 529
13.3.3 Control Unit 531

13.4 Basic Microprocessor Instructions 531
13.4.1 Data Transfer Instructions 531
13.4.2 Arithmetic Instructions 532
13.4.3 Logic Instructions 533
13.4.4 Control Transfer or Branch or Program Control Instructions 533
13.4.5 Machine Control Instructions 534

13.5 Addressing Modes 534
13.5.1 Absolute or Memory Direct Addressing Mode 534
13.5.2 Immediate Addressing Mode 535
13.5.3 Register Direct Addressing Mode 535
13.5.4 Register Indirect Addressing Mode 535
13.5.5 Indexed Addressing Mode 536
13.5.6 Implicit Addressing Mode and Relative Addressing Mode 537

13.6 Microprocessor Selection 537
13.6.1 Selection Criteria 537
13.6.2 Microprocessor Selection Table for Common Applications 539

13.7 Programming Microprocessors 540
13.8 RISC Versus CISC Processors 541
13.9 Eight-Bit Microprocessors 541

13.9.1 8085 Microprocessor 541
13.9.2 Motorola 6800 Microprocessor 544
13.9.3 Zilog Z80 Microprocessor 546

13.10 16-Bit Microprocessors 547
13.10.1 8086 Microprocessor 547
13.10.2 80186 Microprocessor 548

Contents xvii

13.10.3 80286 Microprocessor 548
13.10.4 MC68000 Microprocessor 549

13.11 32-Bit Microprocessors 551
13.11.1 80386 Microprocessor 551
13.11.2 MC68020 Microprocessor 553
13.11.3 MC68030 Microprocessor 554
13.11.4 80486 Microprocessor 555
13.11.5 PowerPC RISC Microprocessors 557

13.12 Pentium Series of Microprocessors 557
13.12.1 Salient Features 558
13.12.2 Pentium Pro Microprocessor 559
13.12.3 Pentium II Series 559
13.12.4 Pentium III and Pentium IV Microprocessors 559
13.12.5 Pentium M, D and Extreme Edition Processors 559
13.12.6 Celeron and Xeon Processors 560

13.13 Microprocessors for Embedded Applications 560
13.14 Peripheral Devices 560

13.14.1 Programmable Timer/Counter 561
13.14.2 Programmable Peripheral Interface 561
13.14.3 Programmable Interrupt Controller 561
13.14.4 DMA Controller 561
13.14.5 Programmable Communication Interface 562
13.14.6 Math Coprocessor 562
13.14.7 Programmable Keyboard/Display Interface 562
13.14.8 Programmable CRT Controller 562
13.14.9 Floppy Disk Controller 563
13.14.10 Clock Generator 563
13.14.11 Octal Bus Transceiver 563
Review Questions 563
Further Reading 564

14 Microcontrollers 565
14.1 Introduction to the Microcontroller 565

14.1.1 Applications 567
14.2 Inside the Microcontroller 567

14.2.1 Central Processing Unit (CPU) 568
14.2.2 Random Access Memory (RAM) 569
14.2.3 Read Only Memory (ROM) 569
14.2.4 Special-Function Registers 569
14.2.5 Peripheral Components 569

14.3 Microcontroller Architecture 574
14.3.1 Architecture to Access Memory 574
14.3.2 Mapping Special-Function Registers into Memory Space 576
14.3.3 Processor Architecture 577

14.4 Power-Saving Modes 579
14.5 Application-Relevant Information 580

14.5.1 Eight-Bit Microcontrollers 580
14.5.2 16-Bit Microcontrollers 588

xviii Contents

14.5.3 32-Bit Microcontrollers 590
14.6 Interfacing Peripheral Devices with a Microcontroller 592

14.6.1 Interfacing LEDs 592
14.6.2 Interfacing Electromechanical Relays 593
14.6.3 Interfacing Keyboards 594
14.6.4 Interfacing Seven-Segment Displays 596
14.6.5 Interfacing LCD Displays 598
14.6.6 Interfacing A/D Converters 600
14.6.7 Interfacing D/A Converters 600
Review Questions 602
Problems 602
Further Reading 603

15 Computer Fundamentals 605
15.1 Anatomy of a Computer 605

15.1.1 Central Processing Unit 605
15.1.2 Memory 606
15.1.3 Input/Output Ports 607

15.2 A Computer System 607
15.3 Types of Computer System 607

15.3.1 Classification of Computers on the Basis of Applications 607
15.3.2 Classification of Computers on the Basis of the Technology Used 608
15.3.3 Classification of Computers on the Basis of Size and Capacity 609

15.4 Computer Memory 610
15.4.1 Primary Memory 611

15.5 Random Access Memory 612
15.5.1 Static RAM 612
15.5.2 Dynamic RAM 619
15.5.3 RAM Applications 622

15.6 Read Only Memory 622
15.6.1 ROM Architecture 623
15.6.2 Types of ROM 624
15.6.3 Applications of ROMs 629

15.7 Expanding Memory Capacity 632
15.7.1 Word Size Expansion 632
15.7.2 Memory Location Expansion 634

15.8 Input and Output Ports 637
15.8.1 Serial Ports 638
15.8.2 Parallel Ports 640
15.8.3 Internal Buses 642

15.9 Input/Output Devices 642
15.9.1 Input Devices 643
15.9.2 Output Devices 643

15.10 Secondary Storage or Auxiliary Storage 645
15.10.1 Magnetic Storage Devices 645
15.10.2 Magneto-Optical Storage Devices 648
15.10.3 Optical Storage Devices 648
15.10.4 USB Flash Drive 650

Contents xix

Review Questions 650
Problems 650
Further Reading 651

16 Troubleshooting Digital Circuits and Test Equipment 653
16.1 General Troubleshooting Guidelines 653

16.1.1 Faults Internal to Digital Integrated Circuits 654
16.1.2 Faults External to Digital Integrated Circuits 655

16.2 Troubleshooting Sequential Logic Circuits 659
16.3 Troubleshooting Arithmetic Circuits 663
16.4 Troubleshooting Memory Devices 664

16.4.1 Troubleshooting RAM Devices 664
16.4.2 Troubleshooting ROM Devices 664

16.5 Test and Measuring Equipment 665
16.6 Digital Multimeter 665

16.6.1 Advantages of Using a Digital Multimeter 666
16.6.2 Inside the Digital Meter 666
16.6.3 Significance of the Half-Digit 666

16.7 Oscilloscope 668
16.7.1 Importance of Specifications and Front-Panel Controls 668
16.7.2 Types of Oscilloscope 669

16.8 Analogue Oscilloscopes 669
16.9 CRT Storage Type Analogue Oscilloscopes 669
16.10 Digital Oscilloscopes 669
16.11 Analogue Versus Digital Oscilloscopes 672
16.12 Oscilloscope Specifications 672

16.12.1 Analogue Oscilloscopes 673
16.12.2 Analogue Storage Oscilloscope 674
16.12.3 Digital Storage Oscilloscope 674

16.13 Oscilloscope Probes 677
16.13.1 Probe Compensation 677

16.14 Frequency Counter 678
16.14.1 Universal Counters – Functional Modes 679
16.14.2 Basic Counter Architecture 679
16.14.3 Reciprocal Counters 681
16.14.4 Continuous-Count Counters 682
16.14.5 Counter Specifications 682
16.14.6 Microwave Counters 683

16.15 Frequency Synthesizers and Synthesized Function/Signal Generators 684
16.15.1 Direct Frequency Synthesis 684
16.15.2 Indirect Synthesis 685
16.15.3 Sampled Sine Synthesis (Direct Digital Synthesis) 687
16.15.4 Important Specifications 689
16.15.5 Synthesized Function Generators 689
16.15.6 Arbitrary Waveform Generator 690

16.16 Logic Probe 691
16.17 Logic Analyser 692

16.17.1 Operational Modes 692

xx Contents

16.17.2 Logic Analyser Architecture 692
16.17.3 Key Specifications 695

16.18 Computer–Instrument Interface Standards 696
16.18.1 IEEE-488 Interface 696

16.19 Virtual Instrumentation 697
16.19.1 Use of Virtual Instruments 698
16.19.2 Components of a Virtual Instrument 700
Review Questions 703
Problems 704
Further Reading 705

Index 707

Preface

Digital electronics is essential to understanding the design and working of a wide range of applications,
from consumer and industrial electronics to communications; from embedded systems, and computers
to security and military equipment. As the devices used in these applications decrease in size and
employ more complex technology, it is essential for engineers and students to fully understand both
the fundamentals and also the implementation and application principles of digital electronics, devices
and integrated circuits, thus enabling them to use the most appropriate and effective technique to suit
their technical needs.

Digital Electronics: Principles, Devices and Applications is a comprehensive book covering, in
one volume, both the fundamentals of digital electronics and the applications of digital devices and
integrated circuits. It is different from similar books on the subject in more than one way. Each chapter
in the book, whether it is related to operational fundamentals or applications, is amply illustrated
with diagrams and design examples. In addition, the book covers several new topics, which are of
relevance to any one having an interest in digital electronics and not covered in the books already in
print on the subject. These include digital troubleshooting, digital instrumentation, programmable logic
devices, microprocessors and microcontrollers. While the book covers in entirety what is required by
undergraduate and graduate level students of engineering in electrical, electronics, computer science and
information technology disciplines, it is intended to be a very useful reference book for professionals,
R&D scientists and students at post graduate level.

The book is divided into sixteen chapters covering seven major topics. These are: digital electronics
fundamentals (chapters 1 to 6), combinational logic circuits (chapters 7 and 8), programmable logic
devices (chapter 9), sequential logic circuits (chapters 10 and 11), data conversion devices and circuits
(chapter 12), microprocessors, microcontrollers and microcomputers (chapters 13 to 15) and digital
troubleshooting and instrumentation (chapter 16). The contents of each of the sixteen chapters are
briefly described in the following paragraphs.

The first six chapters deal with the fundamental topics of digital electronics. These include different
number systems that can be used to represent data and binary codes used for representing numeric and
alphanumeric data. Conversion from one number system to another and similarly conversion from one
code to another is discussed at length in these chapters. Binary arithmetic, covering different methods
of performing arithmetic operations on binary numbers is discussed next. Chapters four and five cover
logic gates and logic families. The main topics covered in these two chapters are various logic gates
and related devices, different logic families used to hardware implement digital integrated circuits, the
interface between digital ICs belonging to different logic families and application information such

xxii Preface

as guidelines for using logic devices of different families. Boolean algebra and its various postulates
and theorems and minimization techniques, providing exhaustive coverage of both Karnaugh mapping
and Quine-McCluskey techniques, are discussed in chapter six. The discussion includes application of
these minimization techniques for multi-output Boolean functions and Boolean functions with larger
number of variables. The concepts underlying different fundamental topics of digital electronics and
discussed in first six chapters have been amply illustrated with solved examples.

As a follow-up to logic gates – the most basic building block of combinational logic – chapters
7 and 8 are devoted to more complex combinational logic circuits. While chapter seven covers
arithmetic circuits, including different types of adders and subtractors, such as half and full adder and
subtractor, adder-subtractor, larger bit adders and subtractors, multipliers, look ahead carry generator,
magnitude comparator, and arithmetic logic unit, chapter eight covers multiplexers, de-multiplexers,
encoders and decoders. This is followed by a detailed account of programmable logic devices in
chapter nine. Simple programmable logic devices (SPLDs) such as PAL, PLA, GAL and HAL devices,
complex programmable logic devices (CPLDs) and field programmable gate arrays (FPGAs) have been
exhaustively treated in terms of their architecture, features and applications. Popular devices, from
various international manufacturers, in the three above-mentioned categories of programmable logic
devices are also covered with regard to their architecture, features and facilities.

The next two chapters, 10 and 11, cover the sequential logic circuits. Discussion begins with the
most fundamental building block of sequential logic, that is, flip flop. Different types of flip flops
are covered in detail with regard to their operational fundamentals, different varieties in each of
the categories of flip flops and their applications. Multivibrator circuits, being operationally similar
to flip flops, are also covered at length in this chapter. Counters and registers are the other very
important building blocks of sequential logic with enormous application potential. These are covered
in chapter 11. Particular emphasis is given to timing requirements and design of counters with varying
count sequence requirements. The chapter also includes a detailed description of the design principles
of counters with arbitrary count sequences. Different types of shift registers and some special counters
that have evolved out of shift registers have been covered in detail.

Chapter 12 covers data conversion circuits including digital-to-analogue and analogue-to-digital
converters. Topics covered in this chapter include operational basics, characteristic parameters, types
and applications. Emphasis is given to definition and interpretation of the terminology and the
performance parameters that characterize these devices. Different types of digital-to-analogue and
analogue-to-digital converters, together with their merits and drawbacks are also addressed. Particular
attention is given to their applications. Towards the end of the chapter, application oriented information
in the form of popular type numbers along with their major performance specifications, pin connection
diagrams etc. is presented. Another highlight of the chapter is the inclusion of detailed descriptions of
newer types of converters, such as quad slope and sigma-delta types of analogue-to-digital converters.

Chapters 13 and 14 discuss microprocessors and microcontrollers – the two versatile devices that
have revolutionized the application potential of digital devices and integrated circuits. The entire
range of microprocessors and microcontrollers along with their salient features, operational aspects
and application guidelines are covered in detail. As a natural follow-up to these, microcomputer
fundamentals, with regard to their architecture, input/output devices and memory devices, are discussed
in chapter 15.

The last chapter covers digital troubleshooting techniques and digital instrumentation.
Troubleshooting guidelines for various categories of digital electronics circuits are discussed. These will
particularly benefit practising engineers and electronics enthusiasts. The concepts are illustrated with
the help of a large number of troubleshooting case studies pertaining to combinational, sequential and
memory devices. A wide range of digital instruments is covered after a discussion on troubleshooting
guidelines. The instruments covered include digital multimeters, digital oscilloscopes, logic probes,

Preface xxiii

logic analysers, frequency synthesizers, and synthesized function generators. Computer-instrument
interface standards and the concept of virtual instrumentation are also discussed at length towards the
end of the chapter.

As an extra resource, a companion website for my book contains lot of additional application
relevant information on digital devices and integrated circuits. The information on this website includes
numerical and functional indices of digital integrated circuits belonging to different logic families,
pin connection diagrams and functional tables of different categories of general purpose digital
integrated circuits and application relevant information on microprocessors, peripheral devices and
microcontrollers. Please go to URL http://www.wiley.com/go/maini_digital.

The motivation to write this book and the selection of topics to be covered were driven mainly by
the absence a book, which, in one volume, covers all the important aspects of digital technology. A
large number of books in print on the subject cover all the routine topics of digital electronics in a
conventional way with total disregard to the needs of application engineers and professionals. As the
author, I have made an honest attempt to cover the subject in entirety by including comprehensive
treatment of newer topics that are either ignored or inadequately covered in the available books on the
subject of digital electronics. This is done keeping in view the changed requirements of my intended
audience, which includes undergraduate and graduate level students, R&D scientists, professionals and
application engineers.

Anil K. Maini

1
Number Systems

The study of number systems is important from the viewpoint of understanding how data are represented
before they can be processed by any digital system including a digital computer. It is one of the
most basic topics in digital electronics. In this chapter we will discuss different number systems
commonly used to represent data. We will begin the discussion with the decimal number system.
Although it is not important from the viewpoint of digital electronics, a brief outline of this will be
given to explain some of the underlying concepts used in other number systems. This will then be
followed by the more commonly used number systems such as the binary, octal and hexadecimal
number systems.

1.1 Analogue Versus Digital
There are two basic ways of representing the numerical values of the various physical quantities with
which we constantly deal in our day-to-day lives. One of the ways, referred to as analogue, is to
express the numerical value of the quantity as a continuous range of values between the two expected
extreme values. For example, the temperature of an oven settable anywhere from 0 to 100 °C may be
measured to be 65 °C or 64.96 °C or 64.958 °C or even 64.9579 °C and so on, depending upon the
accuracy of the measuring instrument. Similarly, voltage across a certain component in an electronic
circuit may be measured as 6.5 V or 6.49 V or 6.487 V or 6.4869 V. The underlying concept in this
mode of representation is that variation in the numerical value of the quantity is continuous and could
have any of the infinite theoretically possible values between the two extremes.

The other possible way, referred to as digital, represents the numerical value of the quantity in steps
of discrete values. The numerical values are mostly represented using binary numbers. For example,
the temperature of the oven may be represented in steps of 1 °C as 64 °C, 65 °C, 66 °C and so on.
To summarize, while an analogue representation gives a continuous output, a digital representation
produces a discrete output. Analogue systems contain devices that process or work on various physical
quantities represented in analogue form. Digital systems contain devices that process the physical
quantities represented in digital form.

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

2 Digital Electronics

Digital techniques and systems have the advantages of being relatively much easier to design and
having higher accuracy, programmability, noise immunity, easier storage of data and ease of fabrication
in integrated circuit form, leading to availability of more complex functions in a smaller size. The
real world, however, is analogue. Most physical quantities – position, velocity, acceleration, force,
pressure, temperature and flowrate, for example – are analogue in nature. That is why analogue
variables representing these quantities need to be digitized or discretized at the input if we want to
benefit from the features and facilities that come with the use of digital techniques. In a typical system
dealing with analogue inputs and outputs, analogue variables are digitized at the input with the help
of an analogue-to-digital converter block and reconverted back to analogue form at the output using a
digital-to-analogue converter block. Analogue-to-digital and digital-to-analogue converter circuits are
discussed at length in the latter part of the book. In the following sections we will discuss various
number systems commonly used for digital representation of data.

1.2 Introduction to Number Systems
We will begin our discussion on various number systems by briefly describing the parameters that are
common to all number systems. An understanding of these parameters and their relevance to number
systems is fundamental to the understanding of how various systems operate. Different characteristics
that define a number system include the number of independent digits used in the number system,
the place values of the different digits constituting the number and the maximum numbers that can
be written with the given number of digits. Among the three characteristic parameters, the most
fundamental is the number of independent digits or symbols used in the number system. It is known as
the radix or base of the number system. The decimal number system with which we are all so familiar
can be said to have a radix of 10 as it has 10 independent digits, i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
Similarly, the binary number system with only two independent digits, 0 and 1, is a radix-2 number
system. The octal and hexadecimal number systems have a radix (or base) of 8 and 16 respectively.
We will see in the following sections that the radix of the number system also determines the other
two characteristics. The place values of different digits in the integer part of the number are given by
r0, r1, r2, r3 and so on, starting with the digit adjacent to the radix point. For the fractional part, these
are r−1, r−2, r−3 and so on, again starting with the digit next to the radix point. Here, r is the radix
of the number system. Also, maximum numbers that can be written with n digits in a given number
system are equal to rn.

1.3 Decimal Number System
The decimal number system is a radix-10 number system and therefore has 10 different digits or
symbols. These are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. All higher numbers after ‘9’ are represented in terms
of these 10 digits only. The process of writing higher-order numbers after ‘9’ consists in writing the
second digit (i.e. ‘1’) first, followed by the other digits, one by one, to obtain the next 10 numbers
from ‘10’ to ‘19’. The next 10 numbers from ‘20’ to ‘29’ are obtained by writing the third digit (i.e.
‘2’) first, followed by digits ‘0’ to ‘9’, one by one. The process continues until we have exhausted all
possible two-digit combinations and reached ‘99’. Then we begin with three-digit combinations. The
first three-digit number consists of the lowest two-digit number followed by ‘0’ (i.e. 100), and the
process goes on endlessly.

The place values of different digits in a mixed decimal number, starting from the decimal point, are
100, 101, 102 and so on (for the integer part) and 10−1, 10−2, 10−3 and so on (for the fractional part).

Number Systems 3

The value or magnitude of a given decimal number can be expressed as the sum of the various digits
multiplied by their place values or weights.

As an illustration, in the case of the decimal number 3586.265, the integer part (i.e. 3586) can be
expressed as

3586 = 6×100 +8×101 +5×102 +3×103 = 6+80+500+3000 = 3586

and the fractional part can be expressed as

265 = 2×10−1 +6×10−2 +5×10−3 = 0�2+0�06+0�005 = 0�265

We have seen that the place values are a function of the radix of the concerned number system and
the position of the digits. We will also discover in subsequent sections that the concept of each digit
having a place value depending upon the position of the digit and the radix of the number system is
equally valid for the other more relevant number systems.

1.4 Binary Number System
The binary number system is a radix-2 number system with ‘0’ and ‘1’ as the two independent digits.
All larger binary numbers are represented in terms of ‘0’ and ‘1’. The procedure for writing higher-
order binary numbers after ‘1’ is similar to the one explained in the case of the decimal number system.
For example, the first 16 numbers in the binary number system would be 0, 1, 10, 11, 100, 101, 110,
111, 1000, 1001, 1010, 1011, 1100, 1101, 1110 and 1111. The next number after 1111 is 10000, which
is the lowest binary number with five digits. This also proves the point made earlier that a maximum
of only 16 (= 24� numbers could be written with four digits. Starting from the binary point, the place
values of different digits in a mixed binary number are 20, 21, 22 and so on (for the integer part) and
2−1, 2−2, 2−3 and so on (for the fractional part).

Example 1.1

Consider an arbitrary number system with the independent digits as 0, 1 and X. What is the radix of
this number system? List the first 10 numbers in this number system.

Solution
• The radix of the proposed number system is 3.
• The first 10 numbers in this number system would be 0, 1, X, 10, 11, 1X, X0, X1, XX and 100.

1.4.1 Advantages

Logic operations are the backbone of any digital computer, although solving a problem on computer
could involve an arithmetic operation too. The introduction of the mathematics of logic by George
Boole laid the foundation for the modern digital computer. He reduced the mathematics of logic to a
binary notation of ‘0’ and ‘1’. As the mathematics of logic was well established and had proved itself
to be quite useful in solving all kinds of logical problem, and also as the mathematics of logic (also
known as Boolean algebra) had been reduced to a binary notation, the binary number system had a
clear edge over other number systems for use in computer systems.

4 Digital Electronics

Yet another significant advantage of this number system was that all kinds of data could be
conveniently represented in terms of 0s and 1s. Also, basic electronic devices used for hardware
implementation could be conveniently and efficiently operated in two distinctly different modes. For
example, a bipolar transistor could be operated either in cut-off or in saturation very efficiently.

Lastly, the circuits required for performing arithmetic operations such as addition, subtraction,
multiplication, division, etc., become a simple affair when the data involved are represented in the
form of 0s and 1s.

1.5 Octal Number System
The octal number system has a radix of 8 and therefore has eight distinct digits. All higher-order
numbers are expressed as a combination of these on the same pattern as the one followed in the case
of the binary and decimal number systems described in Sections 1.3 and 1.4. The independent digits
are 0, 1, 2, 3, 4, 5, 6 and 7. The next 10 numbers that follow ‘7’, for example, would be 10, 11, 12,
13, 14, 15, 16, 17, 20 and 21. In fact, if we omit all the numbers containing the digits 8 or 9, or both,
from the decimal number system, we end up with an octal number system. The place values for the
different digits in the octal number system are 80, 81, 82 and so on (for the integer part) and 8−1, 8−2,
8−3 and so on (for the fractional part).

1.6 Hexadecimal Number System
The hexadecimal number system is a radix-16 number system and its 16 basic digits are 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E and F. The place values or weights of different digits in a mixed
hexadecimal number are 160, 161, 162 and so on (for the integer part) and 16−1, 16−2, 16−3 and so on
(for the fractional part). The decimal equivalent of A, B, C, D, E and F are 10, 11, 12, 13, 14 and 15
respectively, for obvious reasons.

The hexadecimal number system provides a condensed way of representing large binary numbers
stored and processed inside the computer. One such example is in representing addresses of different
memory locations. Let us assume that a machine has 64K of memory. Such a memory has 64K (= 216

= 65 536) memory locations and needs 65 536 different addresses. These addresses can be designated
as 0 to 65 535 in the decimal number system and 00000000 00000000 to 11111111 11111111 in the
binary number system. The decimal number system is not used in computers and the binary notation
here appears too cumbersome and inconvenient to handle. In the hexadecimal number system, 65 536
different addresses can be expressed with four digits from 0000 to FFFF. Similarly, the contents of the
memory when represented in hexadecimal form are very convenient to handle.

1.7 Number Systems – Some Common Terms
In this section we will describe some commonly used terms with reference to different number systems.

1.7.1 Binary Number System

Bit is an abbreviation of the term ‘binary digit’ and is the smallest unit of information. It is either ‘0’
or ‘1’. A byte is a string of eight bits. The byte is the basic unit of data operated upon as a single unit
in computers. A computer word is again a string of bits whose size, called the ‘word length’ or ‘word
size’, is fixed for a specified computer, although it may vary from computer to computer. The word
length may equal one byte, two bytes, four bytes or be even larger.

Number Systems 5

The 1’s complement of a binary number is obtained by complementing all its bits, i.e. by replacing
0s with 1s and 1s with 0s. For example, the 1’s complement of (10010110)2 is (01101001)2. The 2’s
complement of a binary number is obtained by adding ‘1’ to its 1’s complement. The 2’s complement
of (10010110)2 is (01101010)2.

1.7.2 Decimal Number System

Corresponding to the 1’s and 2’s complements in the binary system, in the decimal number system we
have the 9’s and 10’s complements. The 9’s complement of a given decimal number is obtained by
subtracting each digit from 9. For example, the 9’s complement of (2496)10 would be (7503)10. The
10’s complement is obtained by adding ‘1’ to the 9’s complement. The 10’s complement of (2496)10

is (7504)10.

1.7.3 Octal Number System

In the octal number system, we have the 7’s and 8’s complements. The 7’s complement of a given
octal number is obtained by subtracting each octal digit from 7. For example, the 7’s complement of
(562)8 would be (215)8. The 8’s complement is obtained by adding ‘1’ to the 7’s complement. The 8’s
complement of (562)8 would be (216)8.

1.7.4 Hexadecimal Number System

The 15’s and 16’s complements are defined with respect to the hexadecimal number system. The 15’s
complement is obtained by subtracting each hex digit from 15. For example, the 15’s complement of
(3BF)16 would be (C40)16. The 16’s complement is obtained by adding ‘1’ to the 15’s complement.
The 16’s complement of (2AE)16 would be (D52)16.

1.8 Number Representation in Binary
Different formats used for binary representation of both positive and negative decimal numbers include
the sign-bit magnitude method, the 1’s complement method and the 2’s complement method.

1.8.1 Sign-Bit Magnitude

In the sign-bit magnitude representation of positive and negative decimal numbers, the MSB represents
the ‘sign’, with a ‘0’ denoting a plus sign and a ‘1’ denoting a minus sign. The remaining bits represent
the magnitude. In eight-bit representation, while MSB represents the sign, the remaining seven bits
represent the magnitude. For example, the eight-bit representation of +9 would be 00001001, and that
for −9 would be 10001001. An n−bit binary representation can be used to represent decimal numbers
in the range of −(2n−1 − 1) to +(2n−1 − 1). That is, eight-bit representation can be used to represent
decimal numbers in the range from −127 to +127 using the sign-bit magnitude format.

6 Digital Electronics

1.8.2 1’s Complement

In the 1’s complement format, the positive numbers remain unchanged. The negative numbers are
obtained by taking the 1’s complement of the positive counterparts. For example, +9 will be represented
as 00001001 in eight-bit notation, and −9 will be represented as 11110110, which is the 1’s complement
of 00001001. Again, n-bit notation can be used to represent numbers in the range from −(2n−1 − 1)
to +(2n−1 − 1) using the 1’s complement format. The eight-bit representation of the 1’s complement
format can be used to represent decimal numbers in the range from −127 to +127.

1.8.3 2’s Complement

In the 2’s complement representation of binary numbers, the MSB represents the sign, with a ‘0’
used for a plus sign and a ‘1’ used for a minus sign. The remaining bits are used for representing
magnitude. Positive magnitudes are represented in the same way as in the case of sign-bit or 1’s
complement representation. Negative magnitudes are represented by the 2’s complement of their
positive counterparts. For example, +9 would be represented as 00001001, and −9 would be written
as 11110111. Please note that, if the 2’s complement of the magnitude of +9 gives a magnitude of −9,
then the reverse process will also be true, i.e. the 2’s complement of the magnitude of −9 will give a
magnitude of +9. The n-bit notation of the 2’s complement format can be used to represent all decimal
numbers in the range from +(2n−1 − 1) to −(2n−1�. The 2’s complement format is very popular as it is
very easy to generate the 2’s complement of a binary number and also because arithmetic operations
are relatively easier to perform when the numbers are represented in the 2’s complement format.

1.9 Finding the Decimal Equivalent
The decimal equivalent of a given number in another number system is given by the sum of all
the digits multiplied by their respective place values. The integer and fractional parts of the given
number should be treated separately. Binary-to-decimal, octal-to-decimal and hexadecimal-to-decimal
conversions are illustrated below with the help of examples.

1.9.1 Binary-to-Decimal Conversion

The decimal equivalent of the binary number (1001.0101)2 is determined as follows:

• The integer part = 1001
• The decimal equivalent = 1 × 20 + 0 × 21 + 0 × 22 + 1 × 23 = 1 + 0 + 0 + 8 = 9
• The fractional part = .0101
• Therefore, the decimal equivalent = 0 × 2−1 + 1 × 2−2 + 0 × 2−3 + 1 × 2−4 = 0 + 0.25 + 0

+ 0.0625 = 0.3125
• Therefore, the decimal equivalent of (1001.0101)2 = 9.3125

1.9.2 Octal-to-Decimal Conversion

The decimal equivalent of the octal number (137.21)8 is determined as follows:

• The integer part = 137
• The decimal equivalent = 7 × 80 + 3 × 81 + 1 × 82 = 7 + 24 + 64 = 95

Number Systems 7

• The fractional part = .21
• The decimal equivalent = 2 × 8−1 + 1 × 8−2 = 0.265
• Therefore, the decimal equivalent of (137.21)8 = (95.265)10

1.9.3 Hexadecimal-to-Decimal Conversion

The decimal equivalent of the hexadecimal number (1E0.2A)16 is determined as follows:

• The integer part = 1E0
• The decimal equivalent = 0 × 160 + 14 × 161 + 1 × 162 = 0 + 224 + 256 = 480
• The fractional part = 2A
• The decimal equivalent = 2 × 16−1 + 10 × 16−2 = 0.164
• Therefore, the decimal equivalent of (1E0.2A)16 = (480.164)10

Example 1.2

Find the decimal equivalent of the following binary numbers expressed in the 2’s complement format:

(a) 00001110;
(b) 10001110.

Solution
(a) The MSB bit is ‘0’, which indicates a plus sign.

The magnitude bits are 0001110.
The decimal equivalent = 0×20 +1×21 +1×22 +1×23 +0×24 +0×25 +0×26

= 0+2+4+8+0+0+0 = 14

Therefore, 00001110 represents +14
(b) The MSB bit is ‘1’, which indicates a minus sign

The magnitude bits are therefore given by the 2’s complement of 0001110, i.e. 1110010
The decimal equivalent = 0×20 +1×21 +0×22 +0×23 +1×24 +1×25

+1×26

= 0+2+0+0+16+32+64 = 114

Therefore, 10001110 represents −114

1.10 Decimal-to-Binary Conversion
As outlined earlier, the integer and fractional parts are worked on separately. For the integer part,
the binary equivalent can be found by successively dividing the integer part of the number by 2
and recording the remainders until the quotient becomes ‘0’. The remainders written in reverse order
constitute the binary equivalent. For the fractional part, it is found by successively multiplying the
fractional part of the decimal number by 2 and recording the carry until the result of multiplication
is ‘0’. The carry sequence written in forward order constitutes the binary equivalent of the fractional

8 Digital Electronics

part of the decimal number. If the result of multiplication does not seem to be heading towards zero in the
case of the fractional part, the process may be continued only until the requisite number of equivalent bits
has been obtained. This method of decimal–binary conversion is popularly known as the double-dabble
method. The process can be best illustrated with the help of an example.

Example 1.3

We will find the binary equivalent of (13.375)10.

Solution
• The integer part = 13

Divisor Dividend Remainder
2 13 —
2 6 1
2 3 0
2 1 1
— 0 1

• The binary equivalent of (13)10 is therefore (1101)2• The fractional part = .375
• 0.375 × 2 = 0.75 with a carry of 0
• 0.75 × 2 = 0.5 with a carry of 1
• 0.5 × 2 = 0 with a carry of 1
• The binary equivalent of (0.375)10 = (.011)2• Therefore, the binary equivalent of (13.375)10 = (1101.011)2

1.11 Decimal-to-Octal Conversion
The process of decimal-to-octal conversion is similar to that of decimal-to-binary conversion. The
progressive division in the case of the integer part and the progressive multiplication while working
on the fractional part here are by ‘8’ which is the radix of the octal number system. Again, the integer
and fractional parts of the decimal number are treated separately. The process can be best illustrated
with the help of an example.

Example 1.4

We will find the octal equivalent of (73.75)10�

Solution
• The integer part = 73

Divisor Dividend Remainder
8 73 —
8 9 1
8 1 1
— 0 1

Number Systems 9

• The octal equivalent of (73)10 = (111)8• The fractional part = 0.75
• 0.75 × 8 = 0 with a carry of 6
• The octal equivalent of (0.75)10 = (.6)8• Therefore, the octal equivalent of (73.75)10= (111.6)8

1.12 Decimal-to-Hexadecimal Conversion
The process of decimal-to-hexadecimal conversion is also similar. Since the hexadecimal number
system has a base of 16, the progressive division and multiplication factor in this case is 16. The
process is illustrated further with the help of an example.

Example 1.5

Let us determine the hexadecimal equivalent of (82.25)10�

Solution
• The integer part = 82

Divisor Dividend Remainder
16 82 —
16 5 2
— 0 5

• The hexadecimal equivalent of (82)10 = (52)16• The fractional part = 0.25
• 0.25 × 16 = 0 with a carry of 4
• Therefore, the hexadecimal equivalent of (82.25)10 = (52.4)16

1.13 Binary–Octal and Octal–Binary Conversions
An octal number can be converted into its binary equivalent by replacing each octal digit with its
three-bit binary equivalent. We take the three-bit equivalent because the base of the octal number
system is 8 and it is the third power of the base of the binary number system, i.e. 2. All we have then
to remember is the three-bit binary equivalents of the basic digits of the octal number system. A binary
number can be converted into an equivalent octal number by splitting the integer and fractional parts
into groups of three bits, starting from the binary point on both sides. The 0s can be added to complete
the outside groups if needed.

Example 1.6

Let us find the binary equivalent of (374.26)8 and the octal equivalent of (1110100.0100111)2�

Solution
• The given octal number = (374.26)8• The binary equivalent = (011 111 100.010 110)2= (011111100.010110)2

10 Digital Electronics

• Any 0s on the extreme left of the integer part and extreme right of the fractional part of the equivalent
binary number should be omitted. Therefore, (011111100.010110)2= (11111100.01011)2• The given binary number = (1110100.0100111)2• (1110100.0100111)2 = (1 110 100.010 011 1)2

= (001 110 100.010 011 100)2 = (164.234)8

1.14 Hex–Binary and Binary–Hex Conversions
A hexadecimal number can be converted into its binary equivalent by replacing each hex digit with its
four-bit binary equivalent. We take the four-bit equivalent because the base of the hexadecimal number
system is 16 and it is the fourth power of the base of the binary number system. All we have then to
remember is the four-bit binary equivalents of the basic digits of the hexadecimal number system. A
given binary number can be converted into an equivalent hexadecimal number by splitting the integer
and fractional parts into groups of four bits, starting from the binary point on both sides. The 0s can
be added to complete the outside groups if needed.

Example 1.7

Let us find the binary equivalent of (17E.F6)16 and the hex equivalent of (1011001110.011011101)2.

Solution
• The given hex number = (17E.F6)16

• The binary equivalent = (0001 0111 1110.1111 0110)2

= (000101111110.11110110)2

= (101111110.1111011)2

• The 0s on the extreme left of the integer part and on the extreme right of the fractional part have
been omitted.

• The given binary number = (1011001110.011011101)2

= (10 1100 1110.0110 1110 1)2

• The hex equivalent = (0010 1100 1110.0110 1110 1000)2 = (2CE.6E8)16

1.15 Hex–Octal and Octal–Hex Conversions
For hexadecimal–octal conversion, the given hex number is firstly converted into its binary equivalent
which is further converted into its octal equivalent. An alternative approach is firstly to convert the
given hexadecimal number into its decimal equivalent and then convert the decimal number into an
equivalent octal number. The former method is definitely more convenient and straightforward. For
octal–hexadecimal conversion, the octal number may first be converted into an equivalent binary
number and then the binary number transformed into its hex equivalent. The other option is firstly to
convert the given octal number into its decimal equivalent and then convert the decimal number into
its hex equivalent. The former approach is definitely the preferred one. Two types of conversion are
illustrated in the following example.

Example 1.8

Let us find the octal equivalent of (2F.C4)16 and the hex equivalent of (762.013)8�

Number Systems 11

Solution
• The given hex number = (2F.C4)16.
• The binary equivalent = (0010 1111.1100 0100)2 = (00101111.11000100)2

= (101111.110001)2 = (101 111.110 001)2 = (57.61)8.
• The given octal number = (762.013)8.
• The octal number = (762.013)8 = (111 110 010.000 001 011)2

= (111110010.000001011)2

= (0001 1111 0010.0000 0101 1000)2 = (1F2.058)16.

1.16 The Four Axioms
Conversion of a given number in one number system to its equivalent in another system has been discussed
at length in the preceding sections. The methodology has been illustrated with solved examples. The
complete methodology can be summarized as four axioms or principles, which, if understood properly,
would make it possible to solve any problem related to conversion of a given number in one number system
to its equivalent in another number system. These principles are as follows:

1. Whenever it is desired to find the decimal equivalent of a given number in another number system,
it is given by the sum of all the digits multiplied by their weights or place values. The integer and
fractional parts should be handled separately. Starting from the radix point, the weights of different
digits are r0, r1, r2 for the integer part and r−1, r−2, r−3 for the fractional part, where r is the radix
of the number system whose decimal equivalent needs to be determined.

2. To convert a given mixed decimal number into an equivalent in another number system, the integer
part is progressively divided by r and the remainders noted until the result of division yields a
zero quotient. The remainders written in reverse order constitute the equivalent. r is the radix of
the transformed number system. The fractional part is progressively multiplied by r and the carry
recorded until the result of multiplication yields a zero or when the desired number of bits has been
obtained. The carrys written in forward order constitute the equivalent of the fractional part.

3. The octal–binary conversion and the reverse process are straightforward. For octal–binary
conversion, replace each digit in the octal number with its three-bit binary equivalent. For
hexadecimal–binary conversion, replace each hex digit with its four-bit binary equivalent. For
binary–octal conversion, split the binary number into groups of three bits, starting from the binary
point, and, if needed, complete the outside groups by adding 0s, and then write the octal equivalent
of these three-bit groups. For binary–hex conversion, split the binary number into groups of four
bits, starting from the binary point, and, if needed, complete the outside groups by adding 0s, and
then write the hex equivalent of the four-bit groups.

4. For octal–hexadecimal conversion, we can go from the given octal number to its binary equivalent
and then from the binary equivalent to its hex counterpart. For hexadecimal–octal conversion, we
can go from the hex to its binary equivalent and then from the binary number to its octal equivalent.

Example 1.9

Assume an arbitrary number system having a radix of 5 and 0, 1, 2, L and M as its independent digits.
Determine:

(a) the decimal equivalent of (12LM.L1);
(b) the total number of possible four-digit combinations in this arbitrary number system.

12 Digital Electronics

Solution
(a) The decimal equivalent of (12LM) is given by

M×50 +L×51 +2×52 +1×53 = 4×50 +3×51 +2×52 +1×53�L = 3� M = 4�

= 4+15+50+125 = 194

The decimal equivalent of (L1) is given by

L×5−1 +1×5−2 = 3×5−1 +5−2 = 0�64

Combining the results, (12LM.L1)5 = (194.64)10.
(b) The total number of possible four-digit combinations = 54 = 625.

Example 1.10

The 7’s complement of a certain octal number is 5264. Determine the binary and hexadecimal
equivalents of that octal number.

Solution
• The 7’s complement = 5264.
• Therefore, the octal number = (2513)8.
• The binary equivalent = (010 101 001 011)2 = (10101001011)2.
• Also, (10101001011)2 = (101 0100 1011)2 = (0101 0100 1011)2 = (54B)16.
• Therefore, the hex equivalent of (2513)8 = (54B)16 and the binary equivalent of (2513)8 =

(10101001011)2.

1.17 Floating-Point Numbers
Floating-point notation can be used conveniently to represent both large as well as small fractional
or mixed numbers. This makes the process of arithmetic operations on these numbers relatively much
easier. Floating-point representation greatly increases the range of numbers, from the smallest to the
largest, that can be represented using a given number of digits. Floating-point numbers are in general
expressed in the form

N = m×be (1.1)

where m is the fractional part, called the significand or mantissa, e is the integer part, called the
exponent, and b is the base of the number system or numeration. Fractional part m is a p-digit number
of the form (±d.dddd � � � dd), with each digit d being an integer between 0 and b – 1 inclusive. If the
leading digit of m is nonzero, then the number is said to be normalized.

Equation (1.1) in the case of decimal, hexadecimal and binary number systems will be written as
follows:

Decimal system

N = m×10e (1.2)

Number Systems 13

Hexadecimal system

N = m×16e (1.3)

Binary system

N = m×2e (1.4)

For example, decimal numbers 0.0003754 and 3754 will be represented in floating-point notation
as 3.754 × 10−4 and 3.754 × 103 respectively. A hex number 257.ABF will be represented as
2.57ABF × 162. In the case of normalized binary numbers, the leading digit, which is the most
significant bit, is always ‘1’ and thus does not need to be stored explicitly.

Also, while expressing a given mixed binary number as a floating-point number, the radix point is
so shifted as to have the most significant bit immediately to the right of the radix point as a ‘1’. Both
the mantissa and the exponent can have a positive or a negative value.

The mixed binary number (110.1011)2 will be represented in floating-point notation as .1101011
× 23 = .1101011e + 0011. Here, .1101011 is the mantissa and e+0011 implies that the exponent is
+3. As another example, (0.000111)2 will be written as .111e−0011, with .111 being the mantissa
and e−0011 implying an exponent of −3. Also, (−0.00000101)2 may be written as −.101 × 2−5 =
−.101e−0101, where −.101 is the mantissa and e−0101 indicates an exponent of −5. If we wanted
to represent the mantissas using eight bits, then .1101011 and .111 would be represented as .11010110
and .11100000.

1.17.1 Range of Numbers and Precision

The range of numbers that can be represented in any machine depends upon the number of bits in the
exponent, while the fractional accuracy or precision is ultimately determined by the number of bits
in the mantissa. The higher the number of bits in the exponent, the larger is the range of numbers
that can be represented. For example, the range of numbers possible in a floating-point binary number
format using six bits to represent the magnitude of the exponent would be from 2−64 to 2+64, which
is equivalent to a range of 10−19to 10+19. The precision is determined by the number of bits used to
represent the mantissa. It is usually represented as decimal digits of precision. The concept of precision
as defined with respect to floating-point notation can be explained in simple terms as follows. If the
mantissa is stored in n number of bits, it can represent a decimal number between 0 and 2n − 1 as the
mantissa is stored as an unsigned integer. If M is the largest number such that 10M − 1 is less than or
equal to 2n − 1, then M is the precision expressed as decimal digits of precision. For example, if the
mantissa is expressed in 20 bits, then decimal digits of precision can be found to be about 6, as 220 − 1
equals 1 048 575, which is a little over 106 − 1. We will briefly describe the commonly used formats
for binary floating-point number representation.

1.17.2 Floating-Point Number Formats

The most commonly used format for representing floating-point numbers is the IEEE-754 standard.
The full title of the standard is IEEE Standard for Binary Floating-point Arithmetic (ANSI/IEEE STD
754-1985). It is also known as Binary Floating-point Arithmetic for Microprocessor Systems, IEC

14 Digital Electronics

60559:1989. An ongoing revision to IEEE-754 is IEEE-754r. Another related standard IEEE 854-
1987 generalizes IEEE-754 to cover both binary and decimal arithmetic. A brief description of salient
features of the IEEE-754 standard, along with an introduction to other related standards, is given below.

ANSI/IEEE-754 Format
The IEEE-754 floating point is the most commonly used representation for real numbers on
computers including Intel-based personal computers, Macintoshes and most of the UNIX platforms.
It specifies four formats for representing floating-point numbers. These include single-precision,
double-precision, single-extended precision and double-extended precision formats. Table 1.1 lists
characteristic parameters of the four formats contained in the IEEE-754 standard. Of the four formats
mentioned, the single-precision and double-precision formats are the most commonly used ones. The
single-extended and double-extended precision formats are not common.

Figure 1.1 shows the basic constituent parts of the single- and double-precision formats. As shown in
the figure, the floating-point numbers, as represented using these formats, have three basic components
including the sign, the exponent and the mantissa. A ‘0’ denotes a positive number and a ‘1’ denotes
a negative number. The n-bit exponent field needs to represent both positive and negative exponent
values. To achieve this, a bias equal to 2n−1 − 1 is added to the actual exponent in order to obtain the
stored exponent. This equals 127 for an eight-bit exponent of the single-precision format and 1023 for
an 11-bit exponent of the double-precision format. The addition of bias allows the use of an exponent
in the range from −127 to +128, corresponding to a range of 0–255 in the first case, and in the range
from −1023 to +1024, corresponding to a range of 0–2047 in the second case. A negative exponent
is always represented in 2’s complement form. The single-precision format offers a range from 2−127

to 2+127, which is equivalent to 10−38 to 10+38. The figures are 2−1023 to 2+1023, which is equivalent to
10−308 to 10+308 in the case of the double-precision format.

The extreme exponent values are reserved for representing special values. For example, in the case
of the single-precision format, for an exponent value of −127, the biased exponent value is zero,
represented by an all 0s exponent field. In the case of a biased exponent of zero, if the mantissa is zero
as well, the value of the floating-point number is exactly zero. If the mantissa is nonzero, it represents
a denormalized number that does not have an assumed leading bit of ‘1’. A biased exponent of +255,
corresponding to an actual exponent of +128, is represented by an all 1s exponent field. If the mantissa
is zero, the number represents infinity. The sign bit is used to distinguish between positive and negative
infinity. If the mantissa is nonzero, the number represents a ‘NaN’ (Not a Number). The value NaN is
used to represent a value that does not represent a real number. This means that an eight-bit exponent
can represent exponent values between −126 and +127. Referring to Fig. 1.1(a), the MSB of byte 1
indicates the sign of the mantissa. The remaining seven bits of byte 1 and the MSB of byte 2 represent
an eight-bit exponent. The remaining seven bits of byte 2 and the 16 bits of byte 3 and byte 4 give a
23-bit mantissa. The mantissa m is normalized. The left-hand bit of the normalized mantissa is always

Table 1.1 Characteristic parameters of IEEE-754 formats.

Precision Sign (bits) Exponent (bits) Mantissa (bits) Total length (bits) Decimal digits of precision

Single 1 8 23 32 > 6
Single-extended 1 ≥ 11 ≥ 32 ≥ 44 > 9
Double 1 11 52 64 > 15
Double-extended 1 ≥ 15 ≥ 64 ≥ 80 > 19

Number Systems 15

Byte-1 Byte-2 Byte-3 Byte-4

8-bit
exponentSign

23-bit
mantissa

(a)

Sign

Byte-1 Byte-2 Byte-3 Byte-4 Byte-5 Byte-6 Byte-7 Byte-8

11-bit
exponent

52-bit
mantissa

(b)

Figure 1.1 Single-precision and double-precision formats.

‘1’. This ‘1’ is not included but is always implied. A similar explanation can be given in the case of
the double-precision format shown in Fig. 1.1(b).

Step-by-step transformation of (23)10 into an equivalent floating-point number in single-precision
IEEE format is as follows:

• (23)10 = (10111)2 = 1.0111e + 0100.
• The mantissa = 0111000 00000000 00000000.
• The exponent = 00000100.
• The biased exponent = 00000100 + 01111111 = 10000011.
• The sign of the mantissa = 0.
• (+23)10 = 01000001 10111000 00000000 00000000.
• Also, (–23)10= 11000001 10111000 00000000 00000000.

IEEE-754r Format
As mentioned earlier, IEEE-754r is an ongoing revision to the IEEE-754 standard. The main objective of
the revision is to extend the standard wherever it has become necessary, the most obvious enhancement
to the standard being the addition of the 128-bit format and decimal format. Extension of the standard
to include decimal floating-point representation has become necessary as most commercial data are
held in decimal form and the binary floating point cannot represent decimal fractions exactly. If the
binary floating point is used to represent decimal data, it is likely that the results will not be the same as
those obtained by using decimal arithmetic.

In the revision process, many of the definitions have been rewritten for clarification and consistency.
In terms of the addition of new formats, a new addition to the existing binary formats is the 128-bit
‘quad-precision’ format. Also, three new decimal formats, matching the lengths of binary formats,

16 Digital Electronics

have been described. These include decimal formats with a seven-, 16- and 34-digit mantissa, which
may be normalized or denormalized. In order to achieve maximum range (decided by the number of
exponent bits) and precision (decided by the number of mantissa bits), the formats merge part of the
exponent and mantissa into a combination field and compress the remainder of the mantissa using
densely packed decimal encoding. Detailed description of the revision, however, is beyond the scope
of this book.

IEEE-854 Standard
The main objective of the IEEE-854 standard was to define a standard for floating-point arithmetic
without the radix and word length dependencies of the better-known IEEE-754 standard. That is why
IEEE-854 is called the IEEE standard for radix-independent floating-point arithmetic. Although the
standard specifies only the binary and decimal floating-point arithmetic, it provides sufficient guidelines
for those contemplating the implementation of the floating point using any other radix value such
as 16 of the hexadecimal number system. This standard, too, specifies four formats including single,
single-extended, double and double-extended precision formats.

Example 1.11

Determine the floating-point representation of �−142�10 using the IEEE single-precision format.

Solution
• As a first step, we will determine the binary equivalent of (142)10. Following the procedure outlined

in an earlier part of the chapter, the binary equivalent can be written as (142)10 = (10001110)2.
• (10001110)2 = 1.000 1110 × 27 = 1.0001110e + 0111.
• The mantissa = 0001110 00000000 00000000.
• The exponent = 00000111.
• The biased exponent = 00000111 + 01111111 = 10000110.
• The sign of the mantissa = 1.
• Therefore, �−142�10 = 11000011 00001110 00000000 00000000.

Example 1.12

Determine the equivalent decimal numbers for the following floating-point numbers:

(a) 00111111 01000000 00000000 00000000 (IEEE-754 single-precision format);
(b) 11000000 00101001 01100 � � � 45 0s (IEEE-754 double-precision format).

Solution
(a) From an examination of the given number:

The sign of the mantissa is positive, as indicated by the ‘0’ bit in the designated position.
The biased exponent = 01111110.
The unbiased exponent = 01111110−01111111 = 11111111.
It is clear from the eight bits of unbiased exponent that the exponent is negative, as the 2’s
complement representation of a number gives ‘1’ in place of MSB.
The magnitude of the exponent is given by the 2’s complement of (11111111)2, which is
(00000001)2 = 1.

Number Systems 17

Therefore, the exponent = −1.
The mantissa bits = 11000000 00000000 00000000 (‘1’ in MSB is implied).
The normalized mantissa = 1.1000000 00000000 00000000.
The magnitude of the mantissa can be determined by shifting the mantissa bits one position to the left.
That is, the mantissa = (.11)2 = (0.75)10.

(b) The sign of the mantissa is negative, indicated by the ‘1’ bit in the designated position.
The biased exponent = 10000000010.
The unbiased exponent = 10000000010−01111111111 = 00000000011.
It is clear from the 11 bits of unbiased exponent that the exponent is positive owing to the ‘0’ in
place of MSB. The magnitude of the exponent is 3. Therefore, the exponent = +3.
The mantissa bits = 1100101100 � � � 45 0s (‘1’ in MSB is implied).
The normalized mantissa = 1.100101100 � � � 45 0s.
The magnitude of the mantissa can be determined by shifting the mantissa bits three positions to
the right.
That is, the mantissa = (1100.101)2 = (12.625)10.
Therefore, the equivalent decimal number = −12�625.

Review Questions
1. What is meant by the radix or base of a number system? Briefly describe why hex representation is

used for the addresses and the contents of the memory locations in the main memory of a computer.
2. What do you understand by the l’s and 2’s complements of a binary number? What will be the

range of decimal numbers that can be represented using a 16-bit 2’s complement format?
3. Briefly describe the salient features of the IEEE-754 standard for representing floating-point

numbers.
4. Why was it considered necessary to carry out a revision of the IEEE-754 standard? What are the

main features of IEEE-754r (the notation for IEEE-754 under revision)?
5. In a number system, what decides (a) the place value or weight of a given digit and (b) the maximum

numbers representable with a given number of digits?
6. In a floating-point representation, what represents (a) the range of representable numbers and (b)

the precision with which a given number can be represented?
7. Why is there a need to have floating-point standards that can take care of decimal data and decimal

arithmetic in addition to binary data and arithmetic?

Problems
1. Do the following conversions:

(a) eight-bit 2’s complement representation of (−23)10;
(b) The decimal equivalent of (00010111)2 represented in 2’s complement form.

(a) 11101001; (b) +23

2. Two possible binary representations of (−1)10 are (10000001)2 and (11111111)2. One of them
belongs to the sign-bit magnitude format and the other to the 2’s complement format. Identify.

(10000001)2 = sign-bit magnitude and (11111111)2 = 2’s complement form

3. Represent the following in the IEEE-754 floating-point standard using the single-precision format:

(a) 32-bit binary number 11110000 11001100 10101010 00001111;
(b) (−118.625)10.

18 Digital Electronics

(a) 01001111 01110000 11001100 10101010;
(b) 11000010 11101101 01000000 00000000

4. Give the next three numbers in each of the following hex sequences:

(a) 4A5, 4A6, 4A7, 4A8, � � � ;
(b) B998, B999, � � �

(a) 4A9, 4AA, 4AB; (b) B99A, B99B, B99C

5. Show that:

(a) (13A7)16 = (5031)10;
(b) (3F2)16 = (1111110010)2.

6. Assume a radix-32 arbitrary number system with 0–9 and A–V as its basic digits. Express the mixed
binary number (110101.001)2 in this arbitrary number system.

1L.4

Further Reading
1. Tokheim, R. L. (1994) Schaum’s Outline Series of Digital Principles, McGraw-Hill Companies Inc., USA.
2. Atiyah, S. K. (2005) A Survey of Arithmetic, Trafford Publishing, Victoria, BC, Canada.
3. Langholz, G., Mott, J. L. and Kandel, A. (1998) Foundations of Digital Logic Design, World Scientific Publ.

Co. Inc., Singapore.
4. Cook, N. P. (2003) Practical Digital Electronics, Prentice-Hall, NJ, USA.
5. Lu, M. (2004) Arithmetic and Logic in Computer Systems, John Wiley & Sons, Inc., NJ, USA.

2
Binary Codes

The present chapter is an extension of the previous chapter on number systems. In the previous
chapter, beginning with some of the basic concepts common to all number systems and an outline
on the familiar decimal number system, we went on to discuss the binary, the hexadecimal and
the octal number systems. While the binary system of representation is the most extensively used
one in digital systems, including computers, octal and hexadecimal number systems are commonly
used for representing groups of binary digits. The binary coding system, called the straight binary
code and discussed in the previous chapter, becomes very cumbersome to handle when used to
represent larger decimal numbers. To overcome this shortcoming, and also to perform many other
special functions, several binary codes have evolved over the years. Some of the better-known binary
codes, including those used efficiently to represent numeric and alphanumeric data, and the codes
used to perform special functions, such as detection and correction of errors, will be detailed in this
chapter.

2.1 Binary Coded Decimal
The binary coded decimal (BCD) is a type of binary code used to represent a given decimal number
in an equivalent binary form. BCD-to-decimal and decimal-to-BCD conversions are very easy and
straightforward. It is also far less cumbersome an exercise to represent a given decimal number in
an equivalent BCD code than to represent it in the equivalent straight binary form discussed in the
previous chapter.

The BCD equivalent of a decimal number is written by replacing each decimal digit in the integer
and fractional parts with its four-bit binary equivalent. As an example, the BCD equivalent of (23.15)10

is written as (0010 0011.0001 0101)BCD. The BCD code described above is more precisely known
as the 8421 BCD code, with 8, 4, 2 and 1 representing the weights of different bits in the four-bit
groups, starting from MSB and proceeding towards LSB. This feature makes it a weighted code,
which means that each bit in the four-bit group representing a given decimal digit has an assigned

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

20 Digital Electronics

Table 2.1 BCD codes.

Decimal 8421 BCD code 4221 BCD code 5421 BCD code

0 0000 0000 0000
1 0001 0001 0001
2 0010 0010 0010
3 0011 0011 0011
4 0100 1000 0100
5 0101 0111 1000
6 0110 1100 1001
7 0111 1101 1010
8 1000 1110 1011
9 1001 1111 1100

weight. Other weighted BCD codes include the 4221 BCD and 5421 BCD codes. Again, 4, 2, 2 and
1 in the 4221 BCD code and 5, 4, 2 and 1 in the 5421 BCD code represent weights of the relevant
bits. Table 2.1 shows a comparison of 8421, 4221 and 5421 BCD codes. As an example, (98.16)10

will be written as 1111 1110.0001 1100 in 4221 BCD code and 1100 1011.0001 1001 in 5421 BCD
code. Since the 8421 code is the most popular of all the BCD codes, it is simply referred to as the
BCD code.

2.1.1 BCD-to-Binary Conversion

A given BCD number can be converted into an equivalent binary number by first writing its decimal
equivalent and then converting it into its binary equivalent. The first step is straightforward, and the
second step was explained in the previous chapter. As an example, we will find the binary equivalent
of the BCD number 0010 1001.0111 0101:

• BCD number: 0010 1001.0111 0101.
• Corresponding decimal number: 29.75.
• The binary equivalent of 29.75 can be determined to be 11101 for the integer part and .11 for the

fractional part.
• Therefore, (0010 1001.0111 0101)BCD = (11101.11)2.

2.1.2 Binary-to-BCD Conversion

The process of binary-to-BCD conversion is the same as the process of BCD-to-binary conversion
executed in reverse order. A given binary number can be converted into an equivalent BCD number
by first determining its decimal equivalent and then writing the corresponding BCD equivalent. As an
example, we will find the BCD equivalent of the binary number 10101011.101:

• The decimal equivalent of this binary number can be determined to be 171.625.
• The BCD equivalent can then be written as 0001 0111 0001.0110 0010 0101.

Binary Codes 21

2.1.3 Higher-Density BCD Encoding

In the regular BCD encoding of decimal numbers, the number of bits needed to represent a given
decimal number is always greater than the number of bits required for straight binary encoding of the
same. For example, a three-digit decimal number requires 12 bits for representation in conventional
BCD format. However, since 210 > 103, if these three decimal digits are encoded together, only 10
bits would be needed to do that. Two such encoding schemes are Chen-Ho encoding and the densely
packed decimal. The latter has the advantage that subsets of the encoding encode two digits in the
optimal seven bits and one digit in four bits like regular BCD.

2.1.4 Packed and Unpacked BCD Numbers

In the case of unpacked BCD numbers, each four-bit BCD group corresponding to a decimal digit is
stored in a separate register inside the machine. In such a case, if the registers are eight bits or wider,
the register space is wasted.

In the case of packed BCD numbers, two BCD digits are stored in a single eight-bit register. The
process of combining two BCD digits so that they are stored in one eight-bit register involves shifting
the number in the upper register to the left 4 times and then adding the numbers in the upper and lower
registers. The process is illustrated by showing the storage of decimal digits ‘5’ and ‘7’:

• Decimal digit 5 is initially stored in the eight-bit register as: 0000 0101.
• Decimal digit 7 is initially stored in the eight-bit register as: 0000 0111.
• After shifting to the left 4 times, the digit 5 register reads: 0101 0000.
• The addition of the contents of the digit 5 and digit 7 registers now reads: 0101 0111.

Example 2.1

How many bits would be required to encode decimal numbers 0 to 9999 in straight binary and BCD
codes? What would be the BCD equivalent of decimal 27 in 16-bit representation?

Solution
• Total number of decimals to be represented = 10 000 = 104 = 213�29.
• Therefore, the number of bits required for straight binary encoding = 14.
• The number of bits required for BCD encoding = 16.
• The BCD equivalent of 27 in 16-bit representation = 0000000000100111.

2.2 Excess-3 Code
The excess-3 code is another important BCD code. It is particularly significant for arithmetic operations
as it overcomes the shortcomings encountered while using the 8421 BCD code to add two decimal
digits whose sum exceeds 9. The excess-3 code has no such limitation, and it considerably simplifies
arithmetic operations. Table 2.2 lists the excess-3 code for the decimal numbers 0–9.

The excess-3 code for a given decimal number is determined by adding ‘3’ to each decimal
digit in the given number and then replacing each digit of the newly found decimal number by

22 Digital Electronics

Table 2.2 Excess-3 code equivalent of decimal numbers.

Decimal number Excess-3 code Decimal number Excess-3 code

0 0011 5 1000
1 0100 6 1001
2 0101 7 1010
3 0110 8 1011
4 0111 9 1100

its four-bit binary equivalent. It may be mentioned here that, if the addition of ‘3’ to a digit
produces a carry, as is the case with the digits 7, 8 and 9, that carry should not be taken
forward. The result of addition should be taken as a single entity and subsequently replaced
with its excess-3 code equivalent. As an example, let us find the excess-3 code for the decimal
number 597:

• The addition of ‘3’ to each digit yields the three new digits/numbers ‘8’, ‘12’ and ‘10’.
• The corresponding four-bit binary equivalents are 1000, 1100 and 1010 respectively.
• The excess-3 code for 597 is therefore given by: 1000 1100 1010 = 100011001010.

Also, it is normal practice to represent a given decimal digit or number using the maximum number
of digits that the digital system is capable of handling. For example, in four-digit decimal arithmetic,
5 and 37 would be written as 0005 and 0037 respectively. The corresponding 8421 BCD equivalents
would be 0000000000000101 and 0000000000110111 and the excess-3 code equivalents would be
0011001100111000 and 0011001101101010.

Corresponding to a given excess-3 code, the equivalent decimal number can be determined by
first splitting the number into four-bit groups, starting from the radix point, and then subtracting
0011 from each four-bit group. The new number is the 8421 BCD equivalent of the given
excess-3 code, which can subsequently be converted into the equivalent decimal number. As an
example, following these steps, the decimal equivalent of excess-3 number 01010110.10001010 would
be 23.57.

Another significant feature that makes this code attractive for performing arithmetic operations is
that the complement of the excess-3 code of a given decimal number yields the excess-3 code for 9’s
complement of the decimal number. As adding 9’s complement of a decimal number B to a decimal
number A achieves A – B, the excess-3 code can be used effectively for both addition and subtraction
of decimal numbers.

Example 2.3

Find (a) the excess-3 equivalent of (237.75)10 and (b) the decimal equivalent of the excess-3 number
110010100011.01110101.

Solution
(a) Integer part = 237. The excess-3 code for (237)10 is obtained by replacing 2, 3 and 7 with the

four-bit binary equivalents of 5, 6 and 10 respectively. This gives the excess-3 code for (237)10

as: 0101 0110 1010 = 010101101010.

Binary Codes 23

Fractional part = .75. The excess-3 code for (.75)10 is obtained by replacing 7 and 5 with the four-bit
binary equivalents of 10 and 8 respectively. That is, the excess-3 code for (.75)10 = .10101000.
Combining the results of the integral and fractional parts, the excess-3 code for
(237.75)10 = 010101101010.10101000.

(b) The excess-3 code = 110010100011.01110101 = 1100 1010 0011.0111 0101.
Subtracting 0011 from each four-bit group, we obtain the new number as: 1001 0111 0000.0100
0010.
Therefore, the decimal equivalent = (970.42)10.

2.3 Gray Code
The Gray code was designed by Frank Gray at Bell Labs and patented in 1953. It is an unweighted
binary code in which two successive values differ only by 1 bit. Owing to this feature, the maximum
error that can creep into a system using the binary Gray code to encode data is much less than the
worst-case error encountered in the case of straight binary encoding. Table 2.3 lists the binary and
Gray code equivalents of decimal numbers 0–15. An examination of the four-bit Gray code numbers,
as listed in Table 2.3, shows that the last entry rolls over to the first entry. That is, the last and the
first entry also differ by only 1 bit. This is known as the cyclic property of the Gray code. Although
there can be more than one Gray code for a given word length, the term was first applied to a
specific binary code for non-negative integers and called the binary-reflected Gray code or simply the
Gray code.

There are various ways by which Gray codes with a given number of bits can be remembered.
One such way is to remember that the least significant bit follows a repetitive pattern of ‘2’ (11,
00, 11, � � �), the next higher adjacent bit follows a pattern of ‘4’ (1111, 0000, 1111, � � �) and so
on. We can also generate the n-bit Gray code recursively by prefixing a ‘0’ to the Gray code
for n −1 bits to obtain the first 2n−1 numbers, and then prefixing ‘1’ to the reflected Gray code
for n −1 bits to obtain the remaining 2n−1 numbers. The reflected Gray code is nothing but the
code written in reverse order. The process of generation of higher-bit Gray codes using the reflect-
and-prefix method is illustrated in Table 2.4. The columns of bits between those representing the
Gray codes give the intermediate step of writing the code followed by the same written in reverse
order.

Table 2.3 Gray code.

Decimal Binary Gray Decimal Binary Gray

0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000

24 Digital Electronics

Table 2.4 Generation of higher-bit Gray code numbers.

One-bit Gray code Two-bit Gray code Three-bit Gray code Four-bit Gray code

0 0 00 00 000 000 0000
1 1 01 01 001 001 0001

1 11 11 011 011 0011
0 10 10 010 010 0010

10 110 110 0110
11 111 111 0111
01 101 101 0101
00 100 100 0100

100 1100
101 1101
111 1111
110 1110
010 1010
011 1011
001 1001
000 1000

2.3.1 Binary–Gray Code Conversion

A given binary number can be converted into its Gray code equivalent by going through the following
steps:

1. Begin with the most significant bit (MSB) of the binary number. The MSB of the Gray code
equivalent is the same as the MSB of the given binary number.

2. The second most significant bit, adjacent to the MSB, in the Gray code number is obtained by
adding the MSB and the second MSB of the binary number and ignoring the carry, if any. That is,
if the MSB and the bit adjacent to it are both ‘1’, then the corresponding Gray code bit would be a
‘0’.

3. The third most significant bit, adjacent to the second MSB, in the Gray code number is obtained
by adding the second MSB and the third MSB in the binary number and ignoring the carry, if any.

4. The process continues until we obtain the LSB of the Gray code number by the addition of the LSB
and the next higher adjacent bit of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of (1011)2 into its Gray code equivalent:

Binary 1011
Gray code 1- - -
Binary 1011
Gray code 11- -
Binary 1011
Gray code 111-
Binary 1011
Gray code 1110

Binary Codes 25

2.3.2 Gray Code–Binary Conversion

A given Gray code number can be converted into its binary equivalent by going through the following
steps:

1. Begin with the most significant bit (MSB). The MSB of the binary number is the same as the MSB
of the Gray code number.

2. The bit next to the MSB (the second MSB) in the binary number is obtained by adding the MSB in the
binary number to the second MSB in the Gray code number and disregarding the carry, if any.

3. The third MSB in the binary number is obtained by adding the second MSB in the binary number
to the third MSB in the Gray code number. Again, carry, if any, is to be ignored.

4. The process continues until we obtain the LSB of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of the Gray code number 1110 into its binary equivalent:

Gray code 1110
Binary 1- - -
Gray code 1110
Binary 10 - -
Gray code 1110
Binary 101
Gray code 1110
Binary 1011

2.3.3 n-ary Gray Code

The binary-reflected Gray code described above is invariably referred to as the ‘Gray code’. However,
over the years, mathematicians have discovered other types of Gray code. One such code is the n-ary
Gray code, also called the non-Boolean Gray code owing to the use of non-Boolean symbols for
encoding. The generalized representation of the code is the (n, k�-Gray code, where n is the number
of independent digits used and k is the word length. A ternary Gray code (n = 3) uses the values 0,
1 and 2, and the sequence of numbers in the two-digit word length would be (00, 01, 02, 12, 11, 10,
20, 21, 22). In the quaternary (n = 4) code, using 0, 1, 2 and 3 as independent digits and a two-digit
word length, the sequence of numbers would be (00, 01, 02, 03, 13, 12, 11, 10, 20, 21, 22, 23, 33, 32,
31, 30). It is important to note here that an (n, k�-Gray code with an odd n does not exhibit the cyclic
property of the binary Gray code, while in case of an even n it does have the cyclic property.

The (n, k�-Gray code may be constructed recursively, like the binary-reflected Gray code, or may be
constructed iteratively. The process of generating larger word-length ternary Gray codes is illustrated in
Table 2.5. The columns between those representing the ternary Gray codes give the intermediate steps.

2.3.4 Applications

1. The Gray code is used in the transmission of digital signals as it minimizes the occurrence of
errors.

2. The Gray code is preferred over the straight binary code in angle-measuring devices. Use of
the Gray code almost eliminates the possibility of an angle misread, which is likely if the

26 Digital Electronics

Table 2.5 Generation of a larger word-length ternary Gray code.

One-digit ternary code Two-digit ternary code Three-digit ternary code

0 0 00 00 000
1 1 01 01 001
2 2 02 02 002

2 12 12 012
1 11 11 011
0 10 10 010
0 20 20 020
1 21 21 021
2 22 22 022

22 122
21 121
20 120
10 110
11 111
12 112
02 102
01 101
00 100
00 200
01 201
02 202
12 212
11 211
10 210
20 220
21 221
22 222

angle is represented in straight binary. The cyclic property of the Gray code is a plus in this
application.

3. The Gray code is used for labelling the axes of Karnaugh maps, a graphical technique used for
minimization of Boolean expressions.

4. The use of Gray codes to address program memory in computers minimizes power consumption.
This is due to fewer address lines changing state with advances in the program counter.

5. Gray codes are also very useful in genetic algorithms since mutations in the code allow for mostly
incremental changes. However, occasionally a one-bit change can result in a big leap, thus leading
to new properties.

Example 2.4

Find (a) the Gray code equivalent of decimal 13 and (b) the binary equivalent of Gray code number
1111.

Binary Codes 27

Solution
(a) The binary equivalent of decimal 13 is 1101.

Binary–Gray conversion

Binary 1101
Gray 1- - -
Binary 1101
Gray 10 - -
Binary 1101
Gray 101 –
Binary 1101
Gray 1011

(b) Gray–binary conversion

Gray 1111
Binary 1- - -
Gray 1111
Binary 10- -
Gray 1111
Binary 101-
Gray 1111
Binary 1010

Example 2.5

Given the sequence of three-bit Gray code as (000, 001, 011, 010, 110, 111, 101, 100), write the next
three numbers in the four-bit Gray code sequence after 0101.

Solution
The first eight of the 16 Gray code numbers of the four-bit Gray code can be written by appending ‘0’
to the eight three-bit Gray code numbers. The remaining eight can be determined by appending ‘1’ to
the eight three-bit numbers written in reverse order. Following this procedure, we can write the next
three numbers after 0101 as 0100, 1100 and 1101.

2.4 Alphanumeric Codes
Alphanumeric codes, also called character codes, are binary codes used to represent alphanumeric
data. The codes write alphanumeric data, including letters of the alphabet, numbers, mathematical
symbols and punctuation marks, in a form that is understandable and processable by a computer. These
codes enable us to interface input–output devices such as keyboards, printers, VDUs, etc., with the
computer. One of the better-known alphanumeric codes in the early days of evolution of computers,
when punched cards used to be the medium of inputting and outputting data, is the 12-bit Hollerith
code. The Hollerith code was used in those days to encode alphanumeric data on punched cards.
The code has, however, been rendered obsolete, with the punched card medium having completely
vanished from the scene. Two widely used alphanumeric codes include the ASCII and the EBCDIC
codes. While the former is popular with microcomputers and is used on nearly all personal computers
and workstations, the latter is mainly used with larger systems.

28 Digital Electronics

Traditional character encodings such as ASCII, EBCDIC and their variants have a limitation in
terms of the number of characters they can encode. In fact, no single encoding contains enough
characters so as to cover all the languages of the European Union. As a result, these encodings do
not permit multilingual computer processing. Unicode, developed jointly by the Unicode Consortium
and the International Standards Organization (ISO), is the most complete character encoding scheme
that allows text of all forms and languages to be encoded for use by computers. Different codes are
described in the following.

2.4.1 ASCII code

The ASCII (American Standard Code for Information Interchange), pronounced ‘ask-ee’, is strictly a
seven-bit code based on the English alphabet. ASCII codes are used to represent alphanumeric data
in computers, communications equipment and other related devices. The code was first published as
a standard in 1967. It was subsequently updated and published as ANSI X3.4-1968, then as ANSI
X3.4-1977 and finally as ANSI X3.4-1986. Since it is a seven-bit code, it can at the most represent
128 characters. It currently defines 95 printable characters including 26 upper-case letters (A to Z),
26 lower-case letters (a to z), 10 numerals (0 to 9) and 33 special characters including mathematical
symbols, punctuation marks and space character. In addition, it defines codes for 33 nonprinting, mostly
obsolete control characters that affect how text is processed. With the exception of ‘carriage return’
and/or ‘line feed’, all other characters have been rendered obsolete by modern mark-up languages and
communication protocols, the shift from text-based devices to graphical devices and the elimination of
teleprinters, punch cards and paper tapes. An eight-bit version of the ASCII code, known as US ASCII-8
or ASCII-8, has also been developed. The eight-bit version can represent a maximum of 256 characters.

Table 2.6 lists the ASCII codes for all 128 characters. When the ASCII code was introduced, many
computers dealt with eight-bit groups (or bytes) as the smallest unit of information. The eighth bit was
commonly used as a parity bit for error detection on communication lines and other device-specific
functions. Machines that did not use the parity bit typically set the eighth bit to ‘0’.

Table 2.6 ASCII code.

Decimal Hex Binary Code Code description

0 00 0000 0000 NUL Null character
1 01 0000 0001 SOH Start of header
2 02 0000 0010 STX Start of text
3 03 0000 0011 ETX End of text
4 04 0000 0100 EOT End of transmission
5 05 0000 0101 ENQ Enquiry
6 06 0000 0110 ACK Acknowledgement
7 07 0000 0111 BEL Bell
8 08 0000 1000 BS Backspace
9 09 0000 1001 HT Horizontal tab

10 0A 0000 1010 LF Line feed
11 0B 0000 1011 VT Vertical tab
12 0C 0000 1100 FF Form feed
13 0D 0000 1101 CR Carriage return
14 0E 0000 1110 SO Shift out
15 0F 0000 1111 SI Shift in
16 10 0001 0000 DLE Data link escape
17 11 0001 0001 DC1 Device control 1 (XON)

Binary Codes 29

Table 2.6 (continued).

Decimal Hex Binary Code Code description

18 12 0001 0010 DC2 Device control 2
19 13 0001 0011 DC3 Device control 3 (XOFF)
20 14 0001 0100 DC4 Device control 4
21 15 0001 0101 NAK Negative acknowledgement
22 16 0001 0110 SYN Synchronous idle
23 17 0001 0111 ETB End of transmission block
24 18 0001 1000 CAN Cancel
25 19 0001 1001 EM End of medium
26 1A 0001 1010 SUB Substitute
27 1B 0001 1011 ESC Escape
28 1C 0001 1100 FS File separator
29 1D 0001 1101 GS Group separator
30 1E 0001 1110 RS Record separator
31 1F 0001 1111 US Unit separator
32 20 0010 0000 SP Space
33 21 0010 0001 ! Exclamation point
34 22 0010 0010 " Quotation mark
35 23 0010 0011 # Number sign, octothorp, pound
36 24 0010 0100 $ Dollar sign
37 25 0010 0101 % Percent
38 26 0010 0110 & Ampersand
39 27 0010 0111 ’ Apostrophe, prime
40 28 0010 1000 (Left parenthesis
41 29 0010 1001) Right parenthesis
42 2A 0010 1010 * Asterisk, ‘star’
43 2B 0010 1011 + Plus sign
44 2C 0010 1100 , Comma
45 2D 0010 1101 - Hyphen, minus sign
46 2E 0010 1110 . Period, decimal Point, ‘dot’
47 2F 0010 1111 / Slash, virgule
48 30 0011 0000 0 0
49 31 0011 0001 1 1
50 32 0011 0010 2 2
51 33 0011 0011 3 3
52 34 0011 0100 4 4
53 35 0011 0101 5 5
54 36 0011 0110 6 6
55 37 0011 0111 7 7
56 38 0011 1000 8 8
57 39 0011 1001 9 9
58 3A 0011 1010 : Colon
59 3B 0011 1011 ; Semicolon
60 3C 0011 1100 < Less-than sign
61 3D 0011 1101 = Equals sign
62 3E 0011 1110 > Greater-than sign
63 3F 0011 1111 ? Question mark
64 40 0100 0000 @ At sign
65 41 0100 0001 A A

(continued overleaf)

30 Digital Electronics

Table 2.6 (continued).

Decimal Hex Binary Code Code description

66 42 0100 0010 B B
67 43 0100 0011 C C
68 44 0100 0100 D D
69 45 0100 0101 E E
70 46 0100 0110 F F
71 47 0100 0111 G G
72 48 0100 1000 H H
73 49 0100 1001 I I
74 4A 0100 1010 J J
75 4B 0100 1011 K K
76 4C 0100 1100 L L
77 4D 0100 1101 M M
78 4E 0100 1110 N N
79 4F 0100 1111 O O
80 50 0101 0000 P P
81 51 0101 0001 Q Q
82 52 0101 0010 R R
83 53 0101 0011 S S
84 54 0101 0100 T T
85 55 0101 0101 U U
86 56 0101 0110 V V
87 57 0101 0111 W W
88 58 0101 1000 X X
89 59 0101 1001 Y Y
90 5A 0101 1010 Z Z
91 5B 0101 1011 [Opening bracket
92 5C 0101 1100 \ Reverse slash
93 5D 0101 1101] Closing bracket
94 5E 0101 1110 ∧ Circumflex, caret
95 5F 0101 1111 _ Underline, underscore
96 60 0110 0000 ` Grave accent
97 61 0110 0001 a a
98 62 0110 0010 b b
99 63 0110 0011 c c

100 64 0110 0100 d d
101 65 0110 0101 e e
102 66 0110 0110 f f
103 67 0110 0111 g g
104 68 0110 1000 h h
105 69 0110 1001 i i
106 6A 0110 1010 j j
107 6B 0110 1011 k k
108 6C 0110 1100 l l
109 6D 0110 1101 m m
110 6E 0110 1110 n n
111 6F 0110 1111 o o
112 70 0111 0000 p p
113 71 0111 0001 q q
114 72 0111 0010 r r

Binary Codes 31

Table 2.6 (continued).

Decimal Hex Binary Code Code description

115 73 0111 0011 s s
116 74 0111 0100 t t
117 75 0111 0101 u u
118 76 0111 0110 v v
119 77 0111 0111 w w
120 78 0111 1000 x x
121 79 0111 1001 y y
122 7A 0111 1010 z z
123 7B 0111 1011 { Opening brace
124 7C 0111 1100 � Vertical line
125 7D 0111 1101 } Closing brace
126 7E 0111 1110 ∼ Tilde
127 7F 0111 1111 DEL Delete

Looking at the structural features of the code as reflected in Table 2.6, we can see that the digits 0 to
9 are represented with their binary values prefixed with 0011. That is, numerals 0 to 9 are represented
by binary sequences from 0011 0000 to 0011 1001 respectively. Also, lower-case and upper-case
letters differ in bit pattern by a single bit. While upper-case letters ‘A’ to ‘O’ are represented by 0100
0001 to 0100 1111, lower-case letters ‘a’ to ‘o’ are represented by 0110 0001 to 0110 1111. Similarly,
while upper-case letters ‘P’ to ‘Z’ are represented by 0101 0000 to 0101 1010, lower-case letters ‘p’
to ‘z’ are represented by 0111 0000 to 0111 1010.

With widespread use of computer technology, many variants of the ASCII code have evolved over
the years to facilitate the expression of non-English languages that use a Roman-based alphabet. In
some of these variants, all ASCII printable characters are identical to their seven-bit ASCII code
representations. For example, the eight-bit standard ISO/IEC 8859 was developed as a true extension
of ASCII, leaving the original character mapping intact in the process of inclusion of additional values.
This made possible representation of a broader range of languages. In spite of the standard suffering
from incompatibilities and limitations, ISO-8859-1, its variant Windows-1252 and the original seven-bit
ASCII continue to be the most common character encodings in use today.

2.4.2 EBCDIC code

The EBCDIC (Extended Binary Coded Decimal Interchange Code), pronounced ‘eb-si-dik’, is another
widely used alphanumeric code, mainly popular with larger systems. The code was created by IBM to
extend the binary coded decimal that existed at that time. All IBM mainframe computer peripherals
and operating systems use EBCDIC code, and their operating systems provide ASCII and Unicode
modes to allow translation between different encodings. It may be mentioned here that EBCDIC offers
no technical advantage over the ASCII code and its variant ISO-8859 or Unicode. Its importance in the
earlier days lay in the fact that it made it relatively easier to enter data into larger machines with punch
cards. Since, punch cards are not used on mainframes any more, the code is used in contemporary
mainframe machines solely for backwards compatibility.

It is an eight-bit code and thus can accommodate up to 256 characters. Table 2.7 gives the listing of
characters in binary as well as hex form in EBCDIC. The arrangement is similar to the one adopted
for Table 2.6 for the ASCII code. A single byte in EBCDIC is divided into two four-bit groups called

32 Digital Electronics

Table 2.7 EBCDIC code.

Decimal Hex Binary Code Code description

0 00 0000 0000 NUL Null character
1 01 0000 0001 SOH Start of header
2 02 0000 0010 STX Start of text
3 03 0000 0011 ETX End of text
4 04 0000 0100 PF Punch off
5 05 0000 0101 HT Horizontal tab
6 06 0000 0110 LC Lower case
7 07 0000 0111 DEL Delete
8 08 0000 1000
9 09 0000 1001

10 0A 0000 1010 SMM Start of manual message
11 0B 0000 1011 VT Vertical tab
12 0C 0000 1100 FF Form feed
13 0D 0000 1101 CR Carriage return
14 0E 0000 1110 SO Shift out
15 0F 0000 1111 SI Shift in
16 10 0001 0000 DLE Data link escape
17 11 0001 0001 DC1 Device control 1
18 12 0001 0010 DC2 Device control 2
19 13 0001 0011 TM Tape mark
20 14 0001 0100 RES Restore
21 15 0001 0101 NL New line
22 16 0001 0110 BS Backspace
23 17 0001 0111 IL Idle
24 18 0001 1000 CAN Cancel
25 19 0001 1001 EM End of medium
26 1A 0001 1010 CC Cursor control
27 1B 0001 1011 CU1 Customer use 1
28 1C 0001 1100 IFS Interchange file separator
29 1D 0001 1101 IGS Interchange group separator
30 1E 0001 1110 IRS Interchange record separator
31 1F 0001 1111 IUS Interchange unit separator
32 20 0010 0000 DS Digit select
33 21 0010 0001 SOS Start of significance
34 22 0010 0010 FS Field separator
35 23 0010 0011
36 24 0010 0100 BYP Bypass
37 25 0010 0101 LF Line feed
38 26 0010 0110 ETB End of transmission block
39 27 0010 0111 ESC Escape
40 28 0010 1000
41 29 0010 1001
42 2A 0010 1010 SM Set mode
43 2B 0010 1011 CU2 Customer use 2
44 2C 0010 1100
45 2D 0010 1101 ENQ Enquiry
46 2E 0010 1110 ACK Acknowledge
47 2F 0010 1111 BEL Bell
48 30 0011 0000

Binary Codes 33

Table 2.7 (continued).

Decimal Hex Binary Code Code description

49 31 0011 0001
50 32 0011 0010 SYN Synchronous idle
51 33 0011 0011
52 34 0011 0100 PN Punch on
53 35 0011 0101 RS Reader stop
54 36 0011 0110 UC Upper case
55 37 0011 0111 EOT End of transmission
56 38 0011 1000
57 39 0011 1001
58 3A 0011 1010
59 3B 0011 1011 CU3 Customer use 3
60 3C 0011 1100 DC4 Device control 4
61 3D 0011 1101 NAK Negative acknowledge
62 3E 0011 1110
63 3F 0011 1111 SUB Substitute
64 40 0100 0000 SP Space
65 41 0100 0001
66 42 0100 0010
67 43 0100 0011
68 44 0100 0100
69 45 0100 0101
70 46 0100 0110
71 47 0100 0111
72 48 0100 1000
73 49 0100 1001
74 4A 0100 1010 � c Cent sign
75 4B 0100 1011 . Period, decimal point
76 4C 0100 1100 < Less-than sign
77 4D 0100 1101 (Left parenthesis
78 4E 0100 1110 + Plus sign
79 4F 0100 1111 � Logical OR
80 50 0101 0000 & Ampersand
81 51 0101 0001
82 52 0101 0010
83 53 0101 0011
84 54 0101 0100
85 55 0101 0101
86 56 0101 0110
87 57 0101 0111
88 58 0101 1000
89 59 0101 1001
90 5A 0101 1010 ! Exclamation point
91 5B 0101 1011 $ Dollar sign
92 5C 0101 1100 * Asterisk
93 5D 0101 1101) Right parenthesis
94 5E 0101 1110 ; Semicolon
95 5F 0101 1111 ∧ Logical NOT
96 60 0110 0000 - Hyphen, minus sign

(continued overleaf)

34 Digital Electronics

Table 2.7 (continued).

Decimal Hex Binary Code Code description

97 61 0110 0001 / Slash, virgule
98 62 0110 0010
99 63 0110 0011

100 64 0110 0100
101 65 0110 0101
102 66 0110 0110
103 67 0110 0111
104 68 0110 1000
105 69 0110 1001
106 6A 0110 1010
107 6B 0110 1011 , Comma
108 6C 0110 1100 % Percent
109 6D 0110 1101 _ Underline, underscore
110 6E 0110 1110 > Greater-than sign
111 6F 0110 1111 ? Question mark
112 70 0111 0000
113 71 0111 0001
114 72 0111 0010
115 73 0111 0011
116 74 0111 0100
117 75 0111 0101
118 76 0111 0110
119 77 0111 0111
120 78 0111 1000
121 79 0111 1001 ‘ Grave accent
122 7A 0111 1010 : Colon
123 7B 0111 1011 # Number sign, octothorp, pound
124 7C 0111 1100 @ At sign
125 7D 0111 1101 ’ Apostrophe, prime
126 7E 0111 1110 = Equals sign
127 7F 0111 1111 “ Quotation mark
128 80 1000 0000
129 81 1000 1001 a a
130 82 1000 1010 b b
131 83 1000 1011 c c
132 84 1000 1100 d d
133 85 1000 0101 e e
134 86 1000 0110 f f
135 87 1000 0111 g g
136 88 1000 1000 h h
137 89 1000 1001 i i
138 8A 1000 1010
139 8B 1000 1011
140 8C 1000 1100
141 8D 1000 1101
142 8E 1000 1110
143 8F 1000 1111
144 90 1001 0000
145 91 1001 0001 j j

Binary Codes 35

Table 2.7 (continued).

Decimal Hex Binary Code Code description

146 92 1001 0010 k k
147 93 1001 0011 l l
148 94 1001 0100 m m
149 95 1001 0101 n n
150 96 1001 0110 o o
151 97 1001 0111 p p
152 98 1001 1000 q q
153 99 1001 1001 r r
154 9A 1001 1010
155 9B 1001 1011
156 9C 1001 1100
157 9D 1001 1101
158 9E 1001 1110
159 9F 1001 1111
160 A0 1010 0000
161 A1 1010 0001 ∼ Tilde
162 A2 1010 0010 s s
163 A3 1010 0011 t t
164 A4 1010 0100 u u
165 A5 1010 0101 v v
166 A6 1010 0110 w w
167 A7 1010 0111 x x
168 A8 1010 1000 y y
169 A9 1010 1001 z z
170 AA 1010 1010
171 AB 1010 1011
172 AC 1010 1100
173 AD 1010 1101
174 AE 1010 1110
175 AF 1010 1111
176 B0 1011 0000
177 B1 1011 0001
178 B2 1011 0010
179 B3 1011 0011
180 B4 1011 0100
181 B5 1011 0101
182 B6 1011 0110
183 B7 1011 0111
184 B8 1011 1000
185 B9 1011 1001
186 BA 1011 1010
187 BB 1011 1011
188 BC 1011 1100
189 BD 1011 1101
190 BE 1011 1110
191 BF 1011 1111
192 C0 1100 0000 { Opening brace
193 C1 1100 0001 A A

(continued overleaf)

36 Digital Electronics

Table 2.7 (continued).

Decimal Hex Binary Code Code description

194 C2 1100 0010 B B
195 C3 1100 0011 C C
196 C4 1100 0100 D D
197 C5 1100 0101 E E
198 C6 1100 0110 F F
199 C7 1100 0111 G G
200 C8 1100 1000 H H
201 C9 1100 1001 I I
202 CA 1100 1010
203 CB 1100 1011
204 CC 1100 1100
205 CD 1100 1101
206 CE 1100 1110
207 CF 1100 1111
208 D0 1101 0000 } Closing brace
209 D1 1101 0001 J J
210 D2 1101 0010 K K
211 D3 1101 0011 L L
212 D4 1101 0100 M M
213 D5 1101 0101 N N
214 D6 1101 0110 O O
215 D7 1101 0111 P P
216 D8 1101 1000 Q Q
217 D9 1101 1001 R R
218 DA 1101 1010
219 DB 1101 1011
220 DC 1101 1100
221 DD 1101 1101
222 DE 1101 1110
223 DF 1101 1111
224 E0 1110 0000 \ Reverse slant
225 E1 1110 0001
226 E2 1110 0010 S S
227 E3 1110 0011 T T
228 E4 1110 0100 U U
229 E5 1110 0101 V V
230 E6 1110 0110 W W
231 E7 1110 0111 X X
232 E8 1110 1000 Y Y
233 E9 1110 1001 Z Z
234 EA 1110 1010
235 EB 1110 1011
236 EC 1110 1100
237 ED 1110 1101
238 EE 1110 1110
239 EF 1110 1111
240 F0 1111 0000 0 0
241 F1 1111 0001 1 1

Binary Codes 37

Table 2.7 (continued).

Decimal Hex Binary Code Code description

242 F2 1111 0010 2 2
243 F3 1111 0011 3 3
244 F4 1111 0100 4 4
245 F5 1111 0101 5 5
246 F6 1111 0110 6 6
247 F7 1111 0111 7 7
248 F8 1111 1000 8 8
249 F9 1111 1001 9 9
250 FA 1111 1010 �
251 FB 1111 1011
252 FC 1111 1100
253 FD 1111 1101
254 FE 1111 1110
255 FF 1111 1111 eo

nibbles. The first four-bit group, called the ‘zone’, represents the category of the character, while the
second group, called the ‘digit’, identifies the specific character.

2.4.3 Unicode

As briefly mentioned in the earlier sections, encodings such as ASCII, EBCDIC and their variants
do not have a sufficient number of characters to be able to encode alphanumeric data of all forms,
scripts and languages. As a result, these encodings do not permit multilingual computer processing.
In addition, these encodings suffer from incompatibility. Two different encodings may use the same
number for two different characters or different numbers for the same characters. For example, code
4E (in hex) represents the upper-case letter ‘N’ in ASCII code and the plus sign ‘+’ in the EBCDIC
code. Unicode, developed jointly by the Unicode Consortium and the International Organization for
Standardization (ISO), is the most complete character encoding scheme that allows text of all forms
and languages to be encoded for use by computers. It not only enables the users to handle practically
any language and script but also supports a comprehensive set of mathematical and technical symbols,
greatly simplifying any scientific information exchange. The Unicode standard has been adopted by
such industry leaders as HP, IBM, Microsoft, Apple, Oracle, Unisys, Sun, Sybase, SAP and many more.

Unicode and ISO-10646 Standards

Before we get on to describe salient features of Unicode, it may be mentioned that another standard
similar in intent and implementation to Unicode is the ISO-10646. While Unicode is the brainchild of
the Unicode Consortium, a consortium of manufacturers (initially mostly US based) of multilingual
software, ISO-10646 is the project of the International Organization for Standardization. Although
both organizations publish their respective standards independently, they have agreed to maintain
compatibility between the code tables of Unicode and ISO-10646 and closely coordinate any further
extensions.

38 Digital Electronics

The Code Table
The code table defined by both Unicode and ISO-10646 provides a unique number for every character,
irrespective of the platform, program and language used. The table contains characters required to
represent practically all known languages and scripts. The list includes not only the Greek, Latin,
Cyrillic, Arabic, Arabian and Georgian scripts but also Japanese, Chinese and Korean scripts. In
addition, the list also includes scripts such as Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Telugu,
Tamil, Kannada, Thai, Tibetan, Ethiopic, Sinhala, Canadian Syllabics, Mongolian, Myanmar and
others. Scripts not yet covered will eventually be added. The code table also covers a large number of
graphical, typographical, mathematical and scientific symbols.

In the 32-bit version, which is the most recent version, the code table is divided into 216 subsets, with
each subset having 216 characters. In the 32-bit representation, elements of different subsets therefore
differ only in the 16 least significant bits. Each of these subsets is known as a plane. Plane 0, called the
basic multilingual plane (BMP), defined by 00000000 to 0000FFFF, contains all most commonly used
characters including all those found in major older encoding standards. Another subset of 216 characters
could be defined by 00010000 to 0001FFFF. Further, there are different slots allocated within the
BMP to different scripts. For example, the basic Latin character set is encoded in the range 0000 to
007F. Characters added to the code table outside the 16-bit BMP are mostly for specialist applications
such as historic scripts and scientific notation. There are indications that there may never be characters
assigned outside the code space defined by 00000000 to 0010FFFF, which provides space for a little
over 1 million additional characters.

Different characters in Unicode are represented by a hexadecimal number preceded by ‘U+’. For
example, ‘A’ and ‘e’ in basic Latin are respectively represented by U+0041 and U+0065. The first
256 code numbers in Unicode are compatible with the seven-bit ASCII-code and its eight-bit variant
ISO-8859-1. Unicode characters U+0000 to U+007F (128 characters) are identical to those in the
ASCII code, and the Unicode characters in the range U+0000 to U+00FF (256 characters) are identical
to ISO-8859-1.

Use of Combining Characters
Unicode assigns code numbers to combining characters, which are not full characters by themselves
but accents or other diacritical marks added to the previous character. This makes it possible to place
any accent on any character. Although Unicode allows the use of combining characters, it also assigns
separate codes to commonly used accented characters known as precomposed characters. This is done
to ensure backwards compatibility with older encodings. As an example, the character ‘ä’ can be
represented as the precomposed character U+00E4. It can also be represented in Unicode as U+0061
(Latin lower-case letter ‘a’) followed by U+00A8 (combining character ‘..’).

Unicode and ISO-10646 Comparison
Although Unicode and ISO-10646 have identical code tables, Unicode offers many more features not
available with ISO-10646. While the ISO-10646 standard is not much more than a comprehensive
character set, the Unicode standard includes a number of other related features such as character
properties and algorithms for text normalization and handling of bidirectional text to ensure correct
display of mixed texts containing both right-to-left and left-to-right scripts.

2.5 Seven-segment Display Code
Seven-segment displays [Fig. 2.1(a)] are very common and are found almost everywhere, from pocket
calculators, digital clocks and electronic test equipment to petrol pumps. A single seven-segment
display or a stack of such displays invariably meets our display requirement. There are both LED and

Binary Codes 39

DP d

c

g

b

a

f

e

a

bf

e

g

c

dDP

(a)

(b)

(c)

DP d

c

g

b

a

f

e

Figure 2.1 Seven-segment displays.

40 Digital Electronics

Table 2.8 Seven-segment display code.

Common cathode type
‘1’ means ON

Common anode type ‘0’ means ON

a b c d e f g DP a b c d e f g DP

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1
2 1 1 0 1 1 0 1 2 0 0 1 0 0 1 0
3 1 1 1 1 0 0 1 3 0 0 0 0 1 1 0
4 0 1 1 0 0 1 1 4 1 0 0 1 1 0 0
5 1 0 1 1 0 1 1 5 0 1 0 0 1 0 0
6 0 0 1 1 1 1 1 6 1 1 0 0 0 0 0
7 1 1 1 0 0 0 0 7 0 0 0 1 1 1 1
8 1 1 1 1 1 1 1 8 0 0 0 0 0 0 0
9 1 1 1 0 0 1 1 9 0 0 0 1 1 0 0
a 1 1 1 1 1 0 1 a 0 0 0 0 0 1 0
b 0 0 1 1 1 1 1 b 1 1 0 0 0 0 0
c 0 0 0 1 1 0 1 c 1 1 1 0 0 1 0
d 0 1 1 1 1 0 1 d 1 0 0 0 0 1 0
e 1 1 0 1 1 1 1 e 0 0 1 0 0 0 0
f 1 0 0 0 1 1 1 f 0 1 1 1 0 0 0

LCD types of seven-segment display. Furthermore, there are common anode-type LED displays where
the arrangement of different diodes, designated a, b, c, d, e, f and g, is as shown in Fig. 2.1(b), and
common cathode-type displays where the individual diodes are interconnected as shown in Fig. 2.1(c).
Each display unit usually has a dot point (DP).

The DP could be located either towards the left (as shown) or towards the right of the figure
‘8’ display pattern. This type of display can be used to display numerals from 0 to 9 and letters
from A to F. Table 2.8 gives the binary code for displaying different numeric and alphabetic
characters for both the common cathode and the common anode type displays. A ‘1’ lights a
segment in the common cathode type display, and a ‘0’ lights a segment in the common anode type
display.

2.6 Error Detection and Correction Codes
When we talk about digital systems, be it a digital computer or a digital communication set-up, the issue
of error detection and correction is of great practical significance. Errors creep into the bit stream owing
to noise or other impairments during the course of its transmission from the transmitter to the receiver.
Any such error, if not detected and subsequently corrected, can be disastrous, as digital systems are
sensitive to errors and tend to malfunction if the bit error rate is more than a certain threshold level.
Error detection and correction, as we will see below, involves the addition of extra bits, called check
bits, to the information-carrying bit stream to give the resulting bit sequence a unique characteristic
that helps in detection and localization of errors. These additional bits are also called redundant bits
as they do not carry any information. While the addition of redundant bits helps in achieving the goal
of making transmission of information from one place to another error free or reliable, it also makes
it inefficient. In this section, we will examine some common error detection and correction codes.

Binary Codes 41

2.6.1 Parity Code

A parity bit is an extra bit added to a string of data bits in order to detect any error that might have
crept into it while it was being stored or processed and moved from one place to another in a digital
system.

We have an even parity, where the added bit is such that the total number of ls in the data bit string
becomes even, and an odd parity, where the added bit makes the total number of ls in the data bit
string odd. This added bit could be a ‘0’ or a ‘1’. As an example, if we have to add an even parity bit to
01000001 (the eight-bit ASCII code for ‘A’), it will be a ‘0’ and the number will become 001000001.
If we have to add an odd parity bit to the same number, it will be a ‘l’ and the number will become
101000001. The odd parity bit is a complement of the even parity bit. The most common convention
is to use even parity, that is, the total number of 1s in the bit stream, including the parity bit, is even.

The parity check can be made at different points to look for any possible single-bit error, as it would
disturb the parity. This simple parity code suffers from two limitations. Firstly, it cannot detect the
error if the number of bits having undergone a change is even. Although the number of bits in error
being equal to or greater than 4 is a very rare occurrence, the addition of a single parity cannot be
used to detect two-bit errors, which is a distinct possibility in data storage media such as magnetic
tapes. Secondly, the single-bit parity code cannot be used to localize or identify the error bit even if
one bit is in error. There are several codes that provide self-single-bit error detection and correction
mechanisms, and these are discussed below.

2.6.2 Repetition Code

The repetition code makes use of repetitive transmission of each data bit in the bit stream. In the case
of threefold repetition, ‘1’ and ‘0’ would be transmitted as ‘111’ and ‘000’ respectively. If, in the
received data bit stream, bits are examined in groups of three bits, the occurrence of an error can be
detected. In the case of single-bit errors, ‘1’ would be received as 011 or 101 or 110 instead of 111,
and a ‘0’ would be received as 100 or 010 or 001 instead of 000. In both cases, the code becomes
self-correcting if the bit in the majority is taken as the correct bit. There are various forms in which
the data are sent using the repetition code. Usually, the data bit stream is broken into blocks of bits,
and then each block of data is sent some predetermined number of times. For example, if we want
to send eight-bit data given by 11011001, it may be broken into two blocks of four bits each. In the
case of threefold repetition, the transmitted data bit stream would be 110111011101100110011001.
However, such a repetition code where the bit or block of bits is repeated 3 times is not capable of
correcting two-bit errors, although it can detect the occurrence of error. For this, we have to increase
the number of times each bit in the bit stream needs to be repeated. For example, by repeating each
data bit 5 times, we can detect and correct all two-bit errors. The repetition code is highly inefficient
and the information throughput drops rapidly as we increase the number of times each data bit needs
to be repeated to build error detection and correction capability.

2.6.3 Cyclic Redundancy Check Code

Cyclic redundancy check (CRC) codes provide a reasonably high level of protection at low redundancy
level. The cycle code for a given data word is generated as follows. The data word is first appended
by a number of 0s equal to the number of check bits to be added. This new data bit sequence is then
divided by a special binary word whose length equals n + 1, n being the number of check bits to
be added. The remainder obtained as a result of modulo-2 division is then added to the dividend bit

42 Digital Electronics

sequence to get the cyclic code. The code word so generated is completely divisible by the divisor
used in the generation of the code. Thus, when the received code word is again divided by the same
divisor, an error-free reception should lead to an all ‘0’ remainder. A nonzero remainder is indicative
of the presence of errors.

The probability of error detection depends upon the number of check bits, n, used to construct the
cyclic code. It is 100 % for single-bit and two-bit errors. It is also 100 % when an odd number of bits
are in error and the error bursts have a length less than n + 1. The probability of detection reduces to
1 – (1/2)n−1 for an error burst length equal to n + 1, and to 1 – (1/2)n for an error burst length greater
than n + 1.

2.6.4 Hamming Code

We have seen, in the case of the error detection and correction codes described above, how an increase
in the number of redundant bits added to message bits can enhance the capability of the code to detect
and correct errors. If we have a sufficient number of redundant bits, and if these bits can be arranged
such that different error bits produce different error results, then it should be possible not only to detect
the error bit but also to identify its location. In fact, the addition of redundant bits alters the ‘distance’
code parameter, which has come to be known as the Hamming distance. The Hamming distance is
nothing but the number of bit disagreements between two code words. For example, the addition of
single-bit parity results in a code with a Hamming distance of at least 2. The smallest Hamming
distance in the case of a threefold repetition code would be 3. Hamming noticed that an increase
in distance enhanced the code’s ability to detect and correct errors. Hamming’s code was therefore
an attempt at increasing the Hamming distance and at the same time having as high an information
throughput rate as possible.

The algorithm for writing the generalized Hamming code is as follows:

1. The generalized form of code is P1P2D1P3D2D3D4P4D5D6D7D8D9D10D11P5 � � � , where P and D
respectively represent parity and data bits.

2. We can see from the generalized form of the code that all bit positions that are powers of 2 (positions
1, 2, 4, 8, 16, � � �) are used as parity bits.

3. All other bit positions (positions 3, 5, 6, 7, 9, 10, 11, � � �) are used to encode data.
4. Each parity bit is allotted a group of bits from the data bits in the code word, and the value of the

parity bit (0 or 1) is used to give it certain parity.
5. Groups are formed by first checking N− 1 bits and then alternately skipping and checking N bits

following the parity bit. Here, N is the position of the parity bit; 1 for P1, 2 for P2, 4 for P3, 8 for P4

and so on. For example, for the generalized form of code given above, various groups of bits formed
with different parity bits would be P1D1D2D4D5 � � � , P2D1D3D4D6D7 � � � , P3D2D3D4D8D9 � � � ,
P4D5D6D7D8D9D10D11 � � � and so on. To illustrate the formation of groups further, let us examine
the group corresponding to parity bit P3. Now, the position of P3 is at number 4. In order to form
the group, we check the first three bits (N− 1 = 3) and then follow it up by alternately skipping
and checking four bits (N = 4).

The Hamming code is capable of correcting single-bit errors on messages of any length. Although
the Hamming code can detect two-bit errors, it cannot give the error locations. The number of parity
bits required to be transmitted along with the message, however, depends upon the message length, as
shown above. The number of parity bits n required to encode m message bits is the smallest integer
that satisfies the condition (2n – n� > m.

Binary Codes 43

Table 2.9 Generation of Hamming code.

P1 P2 D1 P3 D2 D3 D4

Data bits (without parity) 0 1 1 0
Data bits with parity bit P1 1 0 1 0
Data bits with parity bit P2 1 0 1 0
Data bits with parity bit P3 0 1 1 0
Data bits with parity 1 1 0 0 1 1 0

The most commonly used Hamming code is the one that has a code word length of seven bits with
four message bits and three parity bits. It is also referred to as the Hamming (7, 4) code. The code word
sequence for this code is written as P1P2D1P3D2D3D4, with P1, P2 and P3 being the parity bits and D1,
D2, D3 and D4 being the data bits. We will illustrate step by step the process of writing the Hamming
code for a certain group of message bits and then the process of detection and identification of error
bits with the help of an example. We will write the Hamming code for the four-bit message 0110
representing numeral ‘6’. The process of writing the code is illustrated in Table 2.9, with even parity.

Thus, the Hamming code for 0110 is 1100110. Let us assume that the data bit D1 gets corrupted
in the transmission channel. The received code in that case is 1110110. In order to detect the error,
the parity is checked for the three parity relations mentioned above. During the parity check operation
at the receiving end, three additional bits X, Y and Z are generated by checking the parity status of
P1D1D2D4, P2D1D3D4 and P3D2D3D4 respectively. These bits are a ‘0’ if the parity status is okay,
and a ‘1’ if it is disturbed. In that case, ZYX gives the position of the bit that needs correction. The
process can be best explained with the help of an example.

Examination of the first parity relation gives X =1 as the even parity is disturbed. The second
parity relation yields Y = 1 as the even parity is disturbed here too. Examination of the third relation
gives Z = 0 as the even parity is maintained. Thus, the bit that is in error is positioned at 011 which is
the binary equivalent of ‘3’. This implies that the third bit from the MSB needs to be corrected. After
correcting the third bit, the received message becomes 1100110 which is the correct code.

Example 2.6

By writing the parity code (even) and threefold repetition code for all possible four-bit straight binary
numbers, prove that the Hamming distance in the two cases is at least 2 in the case of the parity code
and 3 in the case of the repetition code.

Solution
The generation of codes is shown in Table 2.10. An examination of the parity code numbers reveals
that the number of bit disagreements between any pair of code words is not less than 2. It is either 2
or 4. It is 4, for example, between 00000 and 10111, 00000 and 11011, 00000 and 11101, 00000 and
11110 and 00000 and 01111. In the case of the threefold repetition code, it is either 3, 6, 9 or 12 and
therefore not less than 3 under any circumstances.

Example 2.7

It is required to transmit letter ‘A’ expressed in the seven-bit ASCII code with the help of the Hamming
(11, 7) code. Given that the seven-bit ASCII notation for ‘A’ is 1000001 and that the data word gets

44 Digital Electronics

Table 2.10 Example 2.6.

Binary Parity Three-time Binary Parity Three-time
number code repetition number code repetition

Code code

0000 00000 000000000000 1000 11000 100010001000
0001 10001 000100010001 1001 01001 100110011001
0010 10010 001000100010 1010 01010 101010101010
0011 00011 001100110011 1011 11011 101110111011
0100 10100 010001000100 1100 01100 110011001100
0101 00101 010101010101 1101 11101 110111011101
0110 00110 011001100110 1110 11110 111011101110
0111 10111 011101110111 1111 01111 111111111111

corrupted to 1010001 in the transmission channel, show how the Hamming code can be used to identify
the error. Use even parity.

Solution
• The generalized form of the Hamming code in this case is P1P2D1P3D2D3D4P4D5D6D7 =

P1P21P3000P4001.
• The four groups of bits using different parity bits are P1D1D2D4D5D7, P2D1D3D4D6D7, P3D2D3D4

and P4D5D6D7.
• This gives P1 = 0, P2 = 0, P3 = 0 and P4 = 1.
• Therefore, the transmitted Hamming code for ‘A’ is 00100001001.
• The received Hamming code is 00100101001.
• Checking the parity for the P1 group gives ‘0’ as it passes the test.
• Checking the parity for the P2 group gives ‘1’ as it fails the test.
• Checking the parity for the P3 group gives ‘1’ as it fails the test.
• Checking the parity for the P4 group gives ‘0’ as it passes the test.
• The bits resulting from the parity check, written in reverse order, constitute 0110, which is the

binary equivalent of ‘6’. This shows that the bit in error is the sixth from the MSB.
• Therefore, the corrected Hamming code is 00100001001, which is the same as the transmitted code.
• The received data word is 1000001.

Review Questions
1. Distinguish between weighted and unweighted codes. Give two examples each of both types of

code.
2. What is an excess-3 BCD code? Which shortcoming of the 8421 BCD code is overcome in the

excess-3 BCD code? Illustrate with the help of an example.
3. What is the Gray code? Why is it also known as the binary-reflected Gray code? Briefly outline

some of the important applications of the Gray code.
4. Briefly describe salient features of the ASCII and EBCDIC codes in terms of their capability to

represent characters and suitability for their use in different platforms.
5. What is the Unicode? Why is it called the most complete character code?

Binary Codes 45

6. What is a parity bit? Define even and odd parity. What is the limitation of the parity code when it
comes to detection and correction of bit errors?

7. What is the Hamming distance? What is the role of the Hamming distance in deciding the error
detection and correction capability of a code meant for the purpose? How does it influence the
information throughput rate?

8. With the help of the generalized form of the Hamming code, explain how the number of parity bits
required to transmit a given number of data bits is decided upon.

Problems
1. Write the excess-3 equivalent codes of (6)10, (78)10 and (357)10, all in 16-bit format.

0011001100111001, 0011001110101011, 0011011010001010

2. Determine the Gray code equivalent of (10011)2 and the binary equivalent of the Gray code number
110011.

11010, (100010)2

3. A 16-bit data word given by 1001100001110110 is to be transmitted by using a fourfold repetition
code. If the data word is broken into four blocks of four bits each, then write the transmitted bit
stream.

1001100110011001100010001000100001110111011101110110011001100110

4. Write (a) the Hamming (7, 4) code for 0000 using even parity and (b) the Hamming (11, 7) code
for 1111111 using odd parity.

(a) 0000000; (b) 00101110111

5. Write the last four of the 16 possible numbers in the two-bit quaternary Gray code with 0, 1, 2 and
3 as its independent digits, beginning with the thirteenth number.

33, 32, 31, 30

Further Reading
1. Tokheim, R. L. (1994) Schaum’s Outline Series of Digital Principles, McGraw-Hill Book Companies Inc., USA.
2. Gillam, R. (2002) Unicode Demystified: A Practical Programmer’s Guide to the Encoding Standard, 1st edition,

Addison-Wesley Professional, Boston, MA, USA.
3. MacWilliams, F. J. and Sloane, N. J. A. (2006) The Theory of Error-Correcting Codes, North-Holland

Mathematical Library, Elsevier Ltd, Oxford, UK.
4. Huffman, W. C. and Pless, V. (2003) Fundamentals of Error-Correcting Codes, Cambridge University Press,

Cambridge, UK.

3
Digital Arithmetic

Having discussed different methods of numeric and alphanumeric data representation in the first two
chapters, the next obvious step is to study the rules of data manipulation. Two types of operation
that are performed on binary data include arithmetic and logic operations. Basic arithmetic operations
include addition, subtraction, multiplication and division. AND, OR and NOT are the basic logic
functions. While the rules of arithmetic operations are covered in the present chapter, those related to
logic operations will be discussed in the next chapter.

3.1 Basic Rules of Binary Addition and Subtraction
The basic principles of binary addition and subtraction are similar to what we all know so well in
the case of the decimal number system. In the case of addition, adding ‘0’ to a certain digit produces
the same digit as the sum, and, when we add ‘1’ to a certain digit or number in the decimal number
system, the result is the next higher digit or number, as the case may be. For example, 6 + 1 in decimal
equals ‘7’ because ‘7’ immediately follows ‘6’ in the decimal number system. Also, 7 + 1 in octal
equals ‘10’ as, in the octal number system, the next adjacent higher number after ‘7’ is ‘10’. Similarly,
9 + 1 in the hexadecimal number system is ‘A’. With this background, we can write the basic rules of
binary addition as follows:

1. 0 + 0 = 0.
2. 0 + 1 = 1.
3. 1 + 0 = 1.
4. 1 + 1 = 0 with a carry of ‘1’ to the next more significant bit.
5. 1 + 1 + 1 = 1 with a carry of ‘1’ to the next more significant bit.

Table 3.1 summarizes the sum and carry outputs of all possible three-bit combinations. We have
taken three-bit combinations as, in all practical situations involving the addition of two larger bit

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

48 Digital Electronics

Table 3.1 Binary addition of three bits.

A B Carry- Sum Carry- A B Carry- Sum Carry-
in (Cin) out (Co) in (Cin) out (Co)

0 0 0 0 0 1 0 0 1 0
0 0 1 1 0 1 0 1 0 1
0 1 0 1 0 1 1 0 0 1
0 1 1 0 1 1 1 1 1 1

numbers, we need to add three bits at a time. Two of the three bits are the bits that are part of the two
binary numbers to be added, and the third bit is the carry-in from the next less significant bit column.

The basic principles of binary subtraction include the following:

1. 0 − 0 = 0.
2. 1 − 0 = 1.
3. 1 − 1 = 0.
4. 0 − 1 = 1 with a borrow of 1 from the next more significant bit.

The above-mentioned rules can also be explained by recalling rules for subtracting decimal numbers.
Subtracting ‘0’ from any digit or number leaves the digit or number unchanged. This explains
the first two rules. Subtracting ‘1’ from any digit or number in decimal produces the immediately
preceding digit or number as the answer. In general, the subtraction operation of larger-bit binary
numbers also involves three bits, including the two bits involved in the subtraction, called the minuend
(the upper bit) and the subtrahend (the lower bit), and the borrow-in. The subtraction operation
produces the difference output and borrow-out, if any. Table 3.2 summarizes the binary subtraction
operation. The entries in Table 3.2 can be explained by recalling the basic rules of binary subtraction
mentioned above, and that the subtraction operation involving three bits, that is, the minuend (A�,
the subtrahend (B� and the borrow-in (Bin�, produces a difference output equal to (A − B − Bin�.
It may be mentioned here that, in the case of subtraction of larger-bit binary numbers, the least
significant bit column always involves two bits to produce a difference output bit and the borrow-out

Table 3.2 Binary subtraction.

Inputs Outputs

Minuend Subtrahend Borrow-in Difference Borrow-out
(A) (B) (Bin) (D) (Bo)

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Digital Arithmetic 49

bit. The borrow-out bit produced here becomes the borrow-in bit for the next more significant bit
column, and the process continues until we reach the most significant bit column. The addition and
subtraction of larger-bit binary numbers is illustrated with the help of examples in sections 3.2 and 3.3
respectively.

3.2 Addition of Larger-Bit Binary Numbers
The addition of larger binary integers, fractions or mixed binary numbers is performed columnwise
in just the same way as in the case of decimal numbers. In the case of binary numbers, however, we
follow the basic rules of addition of two or three binary digits, as outlined earlier. The process of
adding two larger-bit binary numbers can be best illustrated with the help of an example.

Consider two generalized four-bit binary numbers (A3 A2 A1 A0� and (B3 B2 B1 B0�, with A0 and B0

representing the LSB and A3 and B3 representing the MSB of the two numbers. The addition of these
two numbers is performed as follows. We begin with the LSB position. We add the LSB bits and
record the sum S0 below these bits in the same column and take the carry C0, if any, to the next column
of bits. For instance, if A0 = 1 and B0 = 0, then S0 = 1 and C0 = 0. Next we add the bits A1 and B1

and the carry C0 from the previous addition. The process continues until we reach the MSB bits. The
four steps are shown ahead. C0, C1, C2 and C3 are carrys, if any, produced as a result of adding first,
second, third and fourth column bits respectively, starting from LSB and proceeding towards MSB. A
similar procedure is followed when the given numbers have both integer as well as fractional parts:

(C0� (C1� (C0�
1. A3 A2 A1 A0 2. A3 A2 A1 A0

B3 B2 B1 B0 B3 B2 B1 B0

S0 S1 S0

(C2� (C1� (C0� (C2� (C1� (C0�
3. A3 A2 A1 A0 4. A3 A2 A1 A0

B3 B2 B1 B0 B3 B2 B1 B0

S2 S1 S0 C3 S3 S2 S1 S0

3.2.1 Addition Using the 2’s Complement Method

The 2’s complement is the most commonly used code for processing positive and negative binary
numbers. It forms the basis of arithmetic circuits in modern computers. When the decimal numbers to
be added are expressed in 2’s complement form, the addition of these numbers, following the basic
laws of binary addition, gives correct results. Final carry obtained, if any, while adding MSBs should
be disregarded. To illustrate this, we will consider the following four different cases:

1. Both the numbers are positive.
2. Larger of the two numbers is positive.
3. The larger of the two numbers is negative.
4. Both the numbers are negative.

50 Digital Electronics

Case 1

• Consider the decimal numbers +37 and +18.
• The 2’s complement of +37 in eight-bit representation = 00100101.
• The 2’s complement of +18 in eight-bit representation = 00010010.
• The addition of the two numbers, that is, +37 and +18, is performed as follows

00100101
+ 00010010

00110111

• The decimal equivalent of (00110111)2 is (+55), which is the correct answer.

Case 2

• Consider the two decimal numbers +37 and -18.
• The 2’s complement representation of +37 in eight-bit representation = 00100101.
• The 2’s complement representation of −18 in eight-bit representation = 11101110.
• The addition of the two numbers, that is, +37 and −18, is performed as follows:

00100101
+ 11101110

00010011

• The final carry has been disregarded.
• The decimal equivalent of (00010011)2 is +19, which is the correct answer.

Case 3

• Consider the two decimal numbers +18 and −37.
• −37 in 2’s complement form in eight−bit representation = 11011011.
• +18 in 2’s complement form in eight−bit representation = 00010010.
• The addition of the two numbers, that is, −37 and +18, is performed as follows:

11011011
+ 00010010

11101101

• The decimal equivalent of (11101101)2, which is in 2’s complement form, is −19, which is the
correct answer. 2’s complement representation was discussed in detail in Chapter 1 on number
systems.

Case 4

• Consider the two decimal numbers −18 and −37.
• −18 in 2’s complement form is 11101110.
• −37 in 2’s complement form is 11011011.
• The addition of the two numbers, that is, −37 and −18, is performed as follows:

Digital Arithmetic 51

11011011
+ 11101110

11001001

• The final carry in the ninth bit position is disregarded.
• The decimal equivalent of (11001001)2, which is in 2’s complement form, is −55, which is the

correct answer.

It may also be mentioned here that, in general, 2’s complement notation can be used to perform
addition when the expected result of addition lies in the range from −2n−1 to +(2n−1 − 1), n being
the number of bits used to represent the numbers. As an example, eight-bit 2’s complement arithmetic
cannot be used to perform addition if the result of addition lies outside the range from −128 to +127.
Different steps to be followed to do addition in 2’s complement arithmetic are summarized as follows:

1. Represent the two numbers to be added in 2’s complement form.
2. Do the addition using basic rules of binary addition.
3. Disregard the final carry, if any.
4. The result of addition is in 2’s complement form.

Example 3.1

Perform the following addition operations:

1. (275.75)10+ (37.875)10�
2. (AF1.B3)16+ (FFF.E)16�

Solution
1. As a first step, the two given decimal numbers will be converted into their equivalent binary

numbers (decimal-to-binary conversion has been covered at length in Chapter 1, and therefore the
decimal-to-binary conversion details will not be given here):

(275.75)10 = (100010011.11)2 and (37.875)10 = (100101.111)2

The two binary numbers can be rewritten as (100010011.110)2 and (000100101.111)2 to have the
same number of bits in their integer and fractional parts. The addition of two numbers is performed
as follows:

100010011�110
000100101�111
100111001�101

The decimal equivalent of (100111001.101)2 is (313.625)10.

52 Digital Electronics

2. (AF1.B3)16 = (101011110001.10110011)2 and (FFF.E)16 = (111111111111.1110)2. (1111111111
11.1110)2 can also be written as (111111111111.11100000)2 to have the same number of bits in
the integer and fractional parts. The two numbers can now be added as follows:

0101011110001�10110011
0111111111111�11100000
1101011110001�10010011

The hexadecimal equivalent of (1101011110001.10010011)2 is (1AF1.93)16, which is equal to the
hex addition of (AF1.B3)16 and (FFF.E)16.

Example 3.2

Find out whether 16-bit 2’s complement arithmetic can be used to add 14 276 and 18 490.

Solution
The addition of decimal numbers 14 276 and 18 490 would yield 32 766. 16-bit 2’s complement
arithmetic has a range of −215 to +(215 − 1), i.e. −32 768 to +32 767. The expected result is inside
the allowable range. Therefore, 16-bit arithmetic can be used to add the given numbers.

Example 3.3

Add −118 and −32 firstly using eight-bit 2’s complement arithmetic and then using 16-bit 2’s
complement arithmetic. Comment on the results.

Solution
• −118 in eight-bit 2’s complement representation = 10001010.
• −32 in eight-bit 2’s complement representation = 11100000.
• The addition of the two numbers, after disregarding the final carry in the ninth bit position, is

01101010. Now, the decimal equivalent of (01101010)2, which is in 2’s complement form, is +106.
The reason for the wrong result is that the expected result, i.e. −150, lies outside the range of
eight-bit 2’s complement arithmetic. Eight-bit 2’s complement arithmetic can be used when the
expected result lies in the range from −27 to + (27 − 1), i.e. −128 to +127. −118 in 16-bit 2’s
complement representation = 1111111110001010.

• −32 in 16-bit 2’s complement representation = 1111111111100000.
• The addition of the two numbers, after disregarding the final carry in the 17th position, produces

1111111101101010. The decimal equivalent of (1111111101101010)2, which is in 2’s complement
form, is −150, which is the correct answer. 16-bit 2’s complement arithmetic has produced the
correct result, as the expected result lies within the range of 16-bit 2’s complement notation.

3.3 Subtraction of Larger-Bit Binary Numbers
Subtraction is also done columnwise in the same way as in the case of the decimal number system.
In the first step, we subtract the LSBs and subsequently proceed towards the MSB. Wherever the
subtrahend (the bit to be subtracted) is larger than the minuend, we borrow from the next adjacent

Digital Arithmetic 53

higher bit position having a ‘1’. As an example, let us go through different steps of subtracting (1001)2

from (1100)2.
In this case, ‘1’ is borrowed from the second MSB position, leaving a ‘0’ in that position. The

borrow is first brought to the third MSB position to make it ‘10’. Out of ‘10’ in this position,
‘1’ is taken to the LSB position to make ‘10’ there, leaving a ‘1’ in the third MSB position.
10 − 1 in the LSB column gives ‘1’, 1 − 0 in the third MSB column gives ‘1’, 0 − 0 in the second
MSB column gives ‘0’ and 1 − 1 in the MSB also gives ‘0’ to complete subtraction. Subtraction
of mixed numbers is also done in the same manner. The above-mentioned steps are summarized
as follows:

1. 1 1 0 0 2. 1 1 0 0
1 0 0 1 1 0 0 1

1 1 1

3. 1 1 0 0 4. 1 1 0 0
1 0 0 1 1 0 0 1

0 1 1 0 0 1 1

3.3.1 Subtraction Using 2’s Complement Arithmetic

Subtraction is similar to addition. Adding 2’s complement of the subtrahend to the minuend and
disregarding the carry, if any, achieves subtraction. The process is illustrated by considering six
different cases:

1. Both minuend and subtrahend are positive. The subtrahend is the smaller of the two.
2. Both minuend and subtrahend are positive. The subtrahend is the larger of the two.
3. The minuend is positive. The subtrahend is negative and smaller in magnitude.
4. The minuend is positive. The subtrahend is negative and greater in magnitude.
5. Both minuend and subtrahend are negative. The minuend is the smaller of the two.
6. Both minuend and subtrahend are negative. The minuend is the larger of the two.

Case 1

• Let us subtract +14 from +24.
• The 2’s complement representation of +24 = 00011000.
• The 2’s complement representation of +14 = 00001110.
• Now, the 2’s complement of the subtrahend (i.e. +14) is 11110010.
• Therefore, +24 − (+14) is given by

00011000
+ 11110010

00001010

with the final carry disregarded.
• The decimal equivalent of (00001010)2 is +10, which is the correct answer.

54 Digital Electronics

Case 2

• Let us subtract +24 from +14.
• The 2’s complement representation of +14 = 00001110.
• The 2’s complement representation of +24 = 00011000.
• The 2’s complement of the subtrahend (i.e. +24) = 11101000.
• Therefore, +14 − (+24) is given by

00001110
+ 11101000

11110110

• The decimal equivalent of (11110110)2, which is of course in 2’s complement form, is −10 which
is the correct answer.

Case 3

• Let us subtract −14 from +24.
• The 2’s complement representation of +24 = 00011000 = minuend.
• The 2’s complement representation of −14 = 11110010 = subtrahend.
• The 2’s complement of the subtrahend (i.e. −14) = 00001110.
• Therefore, +24 − (−14) is performed as follows:

00011000
+ 00001110

00100110

• The decimal equivalent of (00100110)2 is +38, which is the correct answer.

Case 4

• Let us subtract −24 from +14.
• The 2’s complement representation of +14 = 00001110 = minuend.
• The 2’s complement representation of −24 = 11101000 = subtrahend.
• The 2’s complement of the subtrahend (i.e. −24) = 00011000.
• Therefore, +14 − (−24) is performed as follows:

00001110
+ 00011000

00100110

• The decimal equivalent of (00100110)2 is +38, which is the correct answer.

Case 5

• Let us subtract −14 from −24.
• The 2’s complement representation of −24 = 11101000 = minuend.

Digital Arithmetic 55

• The 2’s complement representation of −14=11110010 = subtrahend.
• The 2’s complement of the subtrahend = 00001110.
• Therefore, −24 − (−14) is given as follows:

11101000
+ 00001110

11110110

• The decimal equivalent of (11110110)2, which is in 2’s complement form, is −10, which is the
correct answer.

Case 6

• Let us subtract −24 from −14.
• The 2’s complement representation of −14 = 11110010 = minuend.
• The 2’s complement representation of −24=11101000 = subtrahend.
• The 2’s complement of the subtrahend = 00011000.
• Therefore, −14 − (−24) is given as follows:

11110010
+ 00011000

00001010

with the final carry disregarded.
• The decimal equivalent of (00001010)2, which is in 2’s complement form, is +10, which is the

correct answer.

It may be mentioned that, in 2’s complement arithmetic, the answer is also in 2’s complement
notation, only with the MSB indicating the sign and the remaining bits indicating the magnitude. In
2’s complement notation, positive magnitudes are represented in the same way as the straight binary
numbers, while the negative magnitudes are represented as the 2’s complement of their straight binary
counterparts. A ‘0’ in the MSB position indicates a positive sign, while a ‘1’ in the MSB position
indicates a negative sign.

The different steps to be followed to do subtraction in 2’s complement arithmetic are summarized
as follows:

1. Represent the minuend and subtrahend in 2’s complement form.
2. Find the 2’s complement of the subtrahend.
3. Add the 2’s complement of the subtrahend to the minuend.
4. Disregard the final carry, if any.
5. The result is in 2’s complement form.
6. 2’s complement notation can be used to perform subtraction when the expected result of subtraction

lies in the range from −2n−1 to +(2n−1 − 1), n being the number of bits used to represent the
numbers.

56 Digital Electronics

Example 3.4

Subtract (1110.011)2 from (11011.11)2 using basic rules of binary subtraction and verify the result by
showing equivalent decimal subtraction.

Solution
The minuend and subtrahend are first modified to have the same number of bits in the integer and
fractional parts. The modified minuend and subtrahend are (11011.110)2 and (01110.011)2 respectively:

11011�110
− 01110�011

01101�011

The decimal equivalents of (11011.110)2 and (01110.011)2 are 27.75 and 14.375 respectively. Their
difference is 13.375, which is the decimal equivalent of (01101.011)2.

Example 3.5

Subtract (a) (−64)10 from (+32)10 and (b) (29.A)16 from (4F.B)16. Use 2’s complement arithmetic.

Solution:
(a) (+32)10in 2’s complement notation = (00100000)2.

(−64)10 in 2’s complement notation = (11000000)2.
The 2’s complement of (−64)10 = (01000000)2.
(+32)10 − (−64)10 is determined by adding the 2’s complement of (−64)10 to (+32)10.
Therefore, the addition of (00100000)2 to (01000000)2 should give the result. The operation is
shown as follows:

00100000
+ 01000000

01100000

The decimal equivalent of (01100000)2 is +96, which is the correct answer as +32 − (−64) = +96.
(b) The minuend = (4F.B)16 = (01001111.1011)2.

The minuend in 2’s complement notation = (01001111.1011)2.
The subtrahend = (29.A)16 = (00101001.1010)2.
The subtrahend in 2’s complement notation = (00101001.1010)2.
The 2’s complement of the subtrahend = (11010110.0110)2.
(4F.B)16 − (29.A)16 is given by the addition of the 2’s complement of the subtrahend to the
minuend.

01001111�1011
+ 11010110�0110

00100110�0001

with the final carry disregarded. The result is also in 2’s complement form. Since the result is a
positive number, 2’s complement notation is the same as it would be in the case of the straight
binary code.
The hex equivalent of the resulting binary number = (26.1)16, which is the correct answer.

Digital Arithmetic 57

3.4 BCD Addition and Subtraction in Excess-3 Code
Below, we will see how the excess-3 code can be used to perform addition and subtraction operations
on BCD numbers.

3.4.1 Addition

The excess-3 code can be very effectively used to perform the addition of BCD numbers. The steps to
be followed for excess-3 addition of BCD numbers are as follows:

1. The given BCD numbers are written in excess-3 form by adding ‘0011’ to each of the four-bit
groups.

2. The two numbers are then added using the basic laws of binary addition.
3. Add ‘0011’ to all those four-bit groups that produce a carry, and subtract ‘0011’ from all those

four-bit groups that do not produce a carry during addition.
4. The result thus obtained is in excess-3 form.

3.4.2 Subtraction

Subtraction of BCD numbers using the excess-3 code is similar to the addition process discussed
above. The steps to be followed for excess-3 substraction of BCD numbers are as follows:

1. Express both minuend and subtrahend in excess-3 code.
2. Perform subtraction following the basic laws of binary subtraction.
3. Subtract ‘0011’ from each invalid BCD four-bit group in the answer.
4. Subtract ‘0011’ from each BCD four-bit group in the answer if the subtraction operation of the

relevant four-bit groups required a borrow from the next higher adjacent four-bit group.
5. Add ‘0011’ to the remaining four-bit groups, if any, in the result.
6. This gives the result in excess-3 code.

The process of addition and subtraction can be best illustrated with the help of following examples.

Example 3.6

Add (0011 0101 0110)BCD and (0101 0111 1001)BCD using the excess-3 addition method and verify the
result using equivalent decimal addition.

Solution
The excess-3 equivalents of 0011 0101 0110 and 0101 0111 1001 are 0110 1000 1001 and 1000 1010
1100 respectively. The addition of the two excess-3 numbers is given as follows:

0110 1000 1001
1000 1010 1100

1111 0011 0101

After adding 0011 to the groups that produced a carry and subtracting 0011 from the groups that did
not produce a carry, we obtain the result of the above addition as 1100 0110 1000. Therefore, 1100

58 Digital Electronics

0110 1000 represents the excess-3 code for the true result. The result in BCD code is 1001 0011 0101,
which is the BCD equivalent of 935. This is the correct answer as the addition of the given BCD
numbers 0011 0101 0110 = (356)10 and 0101 0111 1001 = (579)10 yields (935)10 only.

Example 3.7

Perform (185) 10− (8)10 using the excess-3 code.

Solution
• (185)10 = (0001 1000 0101)BCD.The excess-3 equivalent of (0001 1000 0101)BCD = 0100 1011

1000.
• (8)10 = (008)10 = (0000 0000 1000)BCD. The excess-3 equivalent of (0000 0000 1000)BCD = 0011

0011 1011.
• Subtraction is performed as follows:

0100 1011 1000
− 0011 0011 1011

0001 0111 1101

• In the subtraction operation, the least significant column of four-bit groups needed a borrow, while
the other two columns did not need any borrow. Also, the least significant column has produced an
invalid BCD code group. Subtracting 0011 from the result of this column and adding 0011 to the
results of other two columns, we get 0100 1010 1010. This now constitutes the result of subtraction
expressed in excess-3 code.

• The result in BCD code is therefore 0001 0111 0111.
• The decimal equivalent of 0001 0111 0111 is 177, which is the correct result.

3.5 Binary Multiplication
The basic rules of binary multiplication are governed by the way an AND gate functions when the
two bits to be multiplied are fed as inputs to the gate. Logic gates are discussed in detail in the next
chapter. As of now, it would suffice to say that the result of multiplying two bits is the same as the
output of the AND gate with the two bits applied as inputs to the gate. The basic rules of multiplication
are listed as follows:

1. 0 × 0 = 0.
2. 0 × 1 = 0.
3. 1 × 0 = 0.
4. 1 × 1 = 1.

One of the methods for multiplication of larger-bit binary numbers is similar to what we are
familiar with in the case of decimal numbers. This is called the ‘repeated left-shift and add’ algorithm.
Microprocessors and microcomputers, however, use what is known as the ‘repeated add and right-shift’
algorithm to do binary multiplication as it is comparatively much more convenient to implement than
the ‘repeated left-shift and add’ algorithm. The two algorithms are briefly described below. Also, binary
multiplication of mixed binary numbers is done by performing multiplication without considering the

Digital Arithmetic 59

binary point. Starting from the LSB, the binary point is then placed after n bits, where n is equal to
the sum of the number of bits in the fractional parts of the multiplicand and multiplier.

3.5.1 Repeated Left-Shift and Add Algorithm

In the ‘repeated left-shift and add’ method of binary multiplication, the end-product is the sum of
several partial products, with the number of partial products being equal to the number of bits in the
multiplier binary number. This is similar to the case of decimal multiplication. Each successive partial
product after the first is shifted one digit to the left with respect to the immediately preceding partial
product. In the case of binary multiplication too, the first partial product is obtained by multiplying the
multiplicand binary number by the LSB of the multiplier binary number. The second partial product is
obtained by multiplying the multiplicand binary number by the next adjacent higher bit in the multiplier
binary number and so on. We begin with the LSB of the multiplier to obtain the first partial product.
If the LSB is a ‘1’, a copy of the multiplicand forms the partial product, and it is an all ‘0’ sequence if
the LSB is a ‘0’. We proceed towards the MSB of the multiplier and obtain various partial products.
The second partial product is shifted one bit position to the left relative to the first partial product; the
third partial product is shifted one bit position to the left relative to the second partial product and so
on. The addition of all partial products gives the final answer. If the multiplicand and multiplier have
different signs, the end result has a negative sign, otherwise it is positive. The procedure is further
illustrated by showing (23)10 × (6)10 multiplication.

Multiplicand �
Multiplier �

1 0 1 1 1
× 1 1 0

0 0 0 0 0
1 0 1 1 1

1 0 1 1 1

1 0 0 0 1 0 1 0

�������������� �23�10

�������������� �6�10

The decimal equivalent of (10001010)2 is (138)10, which is the correct result.

3.5.2 Repeated Add and Right-Shift Algorithm

The multiplication process starts with writing an all ‘0’ bit sequence, with the number of bits equal
to the number of bits in the multiplicand. This bit sequence (all ‘0’ sequence) is added to another
same-sized bit sequence, which is the same as the multiplicand if the LSB of the multiplier is a ‘1’, and
an all ‘0’ sequence if it is a ‘0’. The result of the first addition is shifted one bit position to the right,
and the bit shifted out is recorded. The vacant MSB position is replaced by a ‘0’. This new sequence is
added to another sequence, which is an all ‘0’ sequence if the next adjacent higher bit in the multiplier
is a ‘0’, and the same as the multiplicand if it is a ‘1’. The result of the second addition is also shifted
one bit position to the right, and a new sequence is obtained. The process continues until all multiplier
bits are exhausted. The result of the last addition together with the recorded bits constitutes the result
of multiplication. We will illustrate the procedure by doing (23)10 × (6)10 multiplication again, this
time by using the ‘repeated add and right-shift’ algorithm:

• The multiplicand = (23)10 = (10111)2 and the multiplier = (6)10= (110)2. The multiplication process
is shown in Table 3.3.

• Therefore, (10111)2 × (110)2 = (10001010)2.

60 Digital Electronics

Table 3.3 Multiplication using the repeated add and right-shift algorithm.

1 0 1 1 1 Multiplicand
1 1 0 Multiplier

0 0 0 0 0 Start
+ 0 0 0 0 0

0 0 0 0 0 Result of first addition

0 0 0 0 0 0 (Result of addition shifted one bit to right)
+ 1 0 1 1 1

1 0 1 1 1 Result of second addition

0 1 0 1 1 10 (Result of addition shifted one bit to right)
+ 1 0 1 1 1

1 0 0 0 1 0 Result of third addition

0 1 0 0 0 1 010 (Result of addition shifted one bit to right)

Example 3.8

Multiply (a) �100�01�2 × �10�1�2 by using the ‘repeated add and left-shift’ algorithm and (b) (2B)16×
�3�16 by using the ‘add and right-shift’ algorithm. Verify the results by showing equivalent decimal
multiplication.

Solution
(a) As a first step, we will multiply (10001)2 by (101)2. The process is shown as follows:

1 0 0 0 1
× 1 0 1

1 0 0 0 1
0 0 0 0 0

1 0 0 0 1

1 0 1 0 1 0 1

The multiplication result is then given by placing the binary point three bits after the LSB, which
gives (1010.101)2 as the final result. Also, (100.01)2 = (4.25)10 and (10.1)2 = (2.5)10. Moreover,
(4.25)10 × (2.5)10 = (10.625)10 and (1010.101)2 equals (10.625)10, which verifies the result.

(b) (2B)16 = 00101011 = 101011 and (3)16 = 0011 = 11.
Different steps involved in the multiplication process are shown in Table 3.4.
The result of multiplication is therefore (10000001)2. Also, (2B)16 = (43)10 and (3)16 = (3)10.
Therefore, (2B)16 × (3)16 = (129)10. Moreover, (10000001)2 = (129)10, which verifies the result.

3.6 Binary Division
While binary multiplication is the process of repeated addition, binary division is the process of
repeated subtraction. Binary division can be performed by using either the ‘repeated right-shift and

Digital Arithmetic 61

Table 3.4 Example 3.8.

1 0 1 0 1 1 Multiplicand
1 1 Multiplier

0 0 0 0 0 0 Start
+ 1 0 1 0 1 1

1 0 1 0 1 1 Result of first addition

0 1 0 1 0 1 1 (Result of addition shifted one bit to right)
+ 1 0 1 0 1 1

1 0 0 0 0 0 0 Result of second addition

0 1 0 0 0 0 0 01 (Result of addition shifted one bit to right)

subtract’ or the ‘repeated subtract and left-shift’ algorithm. These are briefly described and suitably
illustrated in the following sections.

3.6.1 Repeated Right-Shift and Subtract Algorithm

The algorithm is similar to the case of conventional division with decimal numbers. At the outset,
starting from MSB, we begin with the number of bits in the dividend equal to the number of bits in
the divisor and check whether the divisor is smaller or greater than the selected number of bits in
the dividend. If it happens to be greater, we record a ‘0’ in the quotient column. If it is smaller, we
subtract the divisor from the dividend bits and record a ‘1’ in the quotient column. If it is greater and
we have already recorded a ‘0’, then, as a second step, we include the next adjacent bit in the dividend
bits, shift the divisor to the right by one bit position and again make a similar check like the one made
in the first step. If it is smaller and we have made the subtraction, then in the second step we append
the next MSB of the dividend to the remainder, shift the divisor one bit to the right and again make a
similar check. The options are again the same. The process continues until we have exhausted all the
bits in the dividend. We will illustrate the algorithm with the help of an example. Let us consider the
division of (100110)2 by (1100)2. The sequence of operations needed to carry out the above division
is shown in Table 3.5. The quotient = 011 and the remainder = 10.

Table 3.5 Binary division using the repeated right-shift and subtract algorithm.

Quotient

First step 0 1 0 0 1 1 0 Dividend
−1 1 0 0 Divisor

Second step 1 1 0 0 1 1 First five MSBs of dividend
−1 1 0 0 Divisor shifted to right

0 1 1 1 First subtraction remainder
Third step 1 0 1 1 1 0 Next MSB appended

−1 1 0 0 Divisor right shifted

0 0 1 0 Second subtraction remainder

62 Digital Electronics

Table 3.6 Binary division using the repeate subtract and left-shift
algorithm.

Quotient 1 0 0 1 1 0
−1 1 0 0

0 1 1 0 1 Borrow exists
+1 1 0 0

1 0 0 1 Final carry ignored

1 0 0 1 1 Next MSB appended
−1 1 0 0

1 0 1 1 1 No borrow

0 1 1 1 0 Next MSB appended
−1 1 0 0

1 0 0 0 1 0 No borrow

3.6.2 Repeated Subtract and Left-Shift Algorithm

The procedure can again be best illustrated with the help of an example. Let us consider solving the
above problem using this algorithm. The steps needed to perform the division are as follows. We begin
with the first four MSBs of the dividend, four because the divisor is four bits long. In the first step, we
subtract the divisor from the dividend. If the subtraction requires borrow in the MSB position, enter a
‘0’ in the quotient column; otherwise, enter a ‘1’. In the present case there exists a borrow in the MSB
position, and so there is a ‘0’ in the quotient column. If there is a borrow, the divisor is added to the
result of subtraction. In doing so, the final carry, if any, is ignored. The next MSB is appended to the
result of the first subtraction if there is no borrow, or to the result of subtraction, restored by adding
the divisor, if there is a borrow. By appending the next MSB, the remaining bits of the dividend are
one bit position shifted to the left. It is again compared with the divisor, and the process is repeated.
It goes on until we have exhausted all the bits of the dividend. The final remainder can be further
processed by successively appending 0s and trying subtraction to get fractional part bits of the quotient.
The different steps are summarized in Table 3.6. The quotient = 011 and the remainder = 10.

Example 3.9

Use the ‘repeated right-shift and subtract’ algorithm to divide (110101)2 by (1011)2. Determine both
the integer and the fractional parts of the quotient. The fractional part may be determined up to three
bit places.

Solution
The sequence of operations is given in Table 3.7. The operations are self-explanatory.

• The quotient = 100.110.
• Now, (110101)2 = (53)10 and (1011)2 = (11)10.
• (53)10 divided by (11)10 gives (4.82)10.
• (100.110)2 = (4.75)10, which matches with the expected result to a good approximation.

Digital Arithmetic 63

Table 3.7 Example 3.9.

Quotient

First step 1 1 1 0 1 0 1 Dividend
−1 0 1 1 Divisor

0 0 1 0 First subtraction

Second step 0 0 0 1 0 0 Next MSB appended
−1 0 1 1 Divisor right shifted

Third step 0 0 0 1 0 0 1 Next MSB appended
−1 0 1 1 Divisor right shifted

0 0 1 0 0 1 All bits exhausted

1 0 0 1 0 0 1 0 ‘0’ appended
−1 0 1 1 Divisor right shifted

0 1 1 1 Second subtraction

Fourth step 1 0 1 1 1 0 ‘0’ appended
−1 0 1 1 Divisor right shifted

0 0 0 1 1 Third subtraction

Fifth step 0 0 0 0 1 1 0 ‘0’ appended
−1 0 1 1 Divisor right shifted

0 0 1 1 Fourth subtraction

Example 3.10

Use the ‘repeated subtract and left-shift’ algorithm to divide (100011)2 by (100)2 to determine both the
integer and fractional parts of the quotient. Verify the result by showing equivalent decimal division.
Determine the fractional part to two bit places.

Solution
The sequence of operations is given in Table 3.8. The operations are self-explanatory.

• The quotient = (1000.11)2 = (8.75)10.
• Now, (100011)2 = (35)10 and (100)2 = (4)10.
• (35)10 divided by (4)10 gives (8.75)10 and hence is verified.

Example 3.11

Divide (AF)16 by (09)16 using the method of ‘repeated right shift and subtract’, bearing in mind the
signs of the given numbers, assuming that we are working in eight-bit 2’s complement arithmetic.

Solution
• The dividend = (AF)16.
• As it is a negative hexadecimal number, the magnitude of this number is determined by its 2’s

complement (or more precisely by its 16’s complement in hexadecimal number language).

64 Digital Electronics

Table 3.8 Example 3.10.

Quotient 1 0 0 0 1 1 Dividend
−1 0 0 Divisor

1 0 0 0 No borrow

0 0 0 0 Next MSB appended
−1 0 0

0 1 0 0 Borrow exists
+1 0 0

0 0 0 Final carry ignored
0 0 0 1 Next MSB appended
−1 0 0

0 1 0 1 Borrow exists
+ 1 0 0

0 0 1 Final carry ignored
0 0 1 1 Next MSB appended
− 1 0 0

0 1 1 1 Borrow exists
+1 0 0

0 1 1 Final carry ignored
0 1 1 0 ‘0’ appended

− 1 0 0

1 0 1 0 No borrow

0 1 0 0 ‘0’ appended
−1 0 0

1 0 0 0 No borrow

• The 16’s complement of (AF)16 = (51)16.
• The binary equivalent of (51)16 = 01010001 = 1010001.
• The divisor = (09)16.
• It is a positive number.
• The binary equivalent of (09)16 = 00001001.
• As the dividend is a negative number and the divisor a positive number, the quotient will be a

negative number. The division process using the ‘repeated right-shift and subtract’ algorithm is
given in Table 3.9.

• The quotient = 1001 = (09)16.
• As the quotient should be a negative number, its magnitude is given by the 16’s complement of

(09)16, i.e. (F7)16.
• Therefore, (AF)16 divided by (09)16 gives (F7)16.

3.7 Floating-Point Arithmetic
Before performing arithmetic operations on floating-point numbers, it is necessary to make a few checks,
such as finding the signs of the two mantissas, checking any possible misalignment of exponents, etc.

Digital Arithmetic 65

Table 3.9 Example 3.11

1 1 0 1 0 0 0 1 Divisor less than dividend
−1 0 0 1

0 0 0 1

0 0 0 0 1 0 Divisor greater than dividend
−1 0 0 1

0 0 0 0 1 0 0 Divisor still greater
−1 0 0 1

1 0 0 0 1 0 0 1 Divisor less than dividend
−1 0 0 1

0 0 0 0 0 0 0

For example, if the exponents of the two numbers are not equal, the addition and subtraction operations
necessitate that they be made equal. In that case, the mantissa of the smaller of the two numbers is
shifted right, and the exponent is incremented for each shift until the two exponents are equal. Once the
binary points are aligned and the exponents made equal, addition and subtraction operations become
straightforward. While doing subtraction, of course, a magnitude check is also required to determine
the smaller of the two numbers.

3.7.1 Addition and Subtraction

If N1 and N2 are two floating-point numbers given by

N1 = m1 ×2e

N2 = m2 ×2e

then

N1 +N2 = m1 ×2e +m2 ×2e = �m1 +m2� ×2e

and

N1 − N2 = m1 ×2e − m2 ×2e = �m1 − m2� ×2e

The subtraction operation assumes that N1 > N2. Post-normalization of the result may be required
after the addition or subtraction operation.

3.7.2 Multiplication and Division

In the case of multiplication of two floating-point numbers, the mantissas of the two numbers are
multiplied and their exponents are added. In the case of a division operation, the mantissa of the

66 Digital Electronics

quotient is given by the division of the two mantissas (i.e. dividend mantissa divided by divisor
mantissa) and the exponent of the quotient is given by subtraction of the two exponents (i.e. dividend
exponent minus divisor exponent).

If

N1 = m1 ×2e1and N2 = m2 ×2e2

then

N1 × N2 = �m1 × m2� ×2�e1+e2�

and

N1/N2 = �m1/m2� ×2�e1−e2�

Again, post-normalization may be required after multiplication or division, as in the case of addition
and subtraction operations.

Example 3.12

Add (a) (39)10 and (19)10 and (b) (1E)16 and (F3)16 using floating-point numbers. Verify the answers
by performing equivalent decimal addition.

Solution
(a) (39)10 = 100111 = 0.100111 × 26.

(19)10 = 10011 = 0.10011 × 25 = 0.010011 × 26.

Therefore, (39)10 + (19)10 = 0.100111 × 26 + 0.010011 × 26

= (0.100111 + 0.010011) × 26 = 0.111010 × 26

= 111010 = (58)10

and hence is verified.
(b) (1E�16 = (00011110)2 = 0.00011110 × 28.

(F3)16 = (11110011)2 = 0.11110011 × 28.
(1E�16 + �F3)16 = (0.00011110 + 0.11110011) × 28 = 100010001

= 000100010001
= (111)16.

Also, (1E�16 + (F3)16 = (111)16 and hence is proved.

Example 3.13

Subtract (17)8 from (21)8 using floating-point numbers and verify the answer.

Solution
• (21)8 = (010001)2 = 0.010001 × 26.
• (17)8 = (001111)2 = 0.001111 × 26.
• Therefore, (21)8 − (17)8 = (0.010001 − 0.001111) × 26

= 0.000010 × 26 = 000010 = (02)8.
• Also, (21)8 − (17)8 = (02)8 and hence is verified.

Digital Arithmetic 67

Example 3.14

Multiply (37)10 by (10)10 using floating-point numbers. Verify by showing equivalent decimal
multiplication.

Solution
• The multiplicand = (37)10 = (100101)2 = 0.100101 × 26.
• The multiplier = (10)10 = (1010)2 = 0.1010 × 24.
• (37)10 × (10)10 = (0.100101 × 0.1010) × 210 = 0.0101110010 × 210 = 101110010

= (370)10 and hence is verified.

Example 3.15

Perform (E3B)16 ÷ (1A)16 using binary floating-point numbers. Verify by showing equivalent decimal
division.

Solution
• Dividend = (E3B)16 = (111000111011)2 = 0.111000111011 × 212.
• Divisor = (1A)16 = (00011010)2 = (11010)2 = 0.11010 × 25.
• Therefore, (E3B)16 ÷ (1A)16 = (0.111000111011 ÷ 0.11010) × 27.
• By performing division of the mantissas using either of the two division algorithms described earlier,

we obtain the result of division as (10001100.00011)2.
• (10001100.00011)2 = (140.093)10.
• Also, (E3B)16 = (3643)10 and (1A�16 = (26)10.
• (E3B)16 ÷ (1A)16 = (3643)10 ÷ (26)10 = (140.1)10, which is the same as the result obtained with

binary floating-point arithmetic to a good approximation.

Review Questions
1. Outline the different steps involved in the addition of larger-bit binary numbers for the following

two cases:

(a) The larger of the two numbers is positive and the other number is negative.
(b) The larger of the two numbers is negative and the other number is positive.

2. Outline the different steps involved in the subtraction of larger-bit binary numbers for the following
two cases:

(a) The minuend is positive. The subtrahend is negative and smaller in magnitude.
(b) The minuend is positive. The subtrahend is negative and larger in magnitude.

3. What decides whether a particular binary addition or subtraction operation would be possible with
2’s complement arithmetic?

4. Why in microprocessors and microcomputers is the ‘repeated add and right-shift’ algorithm preferred
over the ‘repeated left-shift and add’ algorithm for binary multiplication? Briefly outline the
procedure for multiplication in the case of the former.

68 Digital Electronics

5. Prove that the largest six-digit hexadecimal number when subtracted from the largest eight-digit
octal number yields zero in decimal.

Problems
1. Perform the following operations using 2’s complement arithmetic. The numbers are represented

using 2’s or 10’s or 16’s complement notation as the case may be. Express the result both in 2’s
complement binary as well as in decimal.

(a) (7F)16 + (A1)16.
(b) (110)10 + (0111)2.

(a) (00100000)2� (32)10; (b) (01110101)2� (117)10

2. Evaluate the following to two binary places:

(a) (100.0001)2 ÷ (10.1)2.
(b) (111001)2 ÷ (1001)2.
(c) (111.001)2 × (1.11)2.

(a) 1.10; (b) 110.01; (c) 1100.01

3. Prove that 16-bit 2’s complement arithmetic cannot be used to add +18 150 and +14 618, while it
can be used to add −18 150 and −14 618.

4. Add the maximum positive integer to the minimum negative integer, both represented in 16-bit 2’s
complement binary notation. Express the answer in 2’s complement binary.

1111111111111111

5. The result of adding two BCD numbers represented in excess-3 code is 0111 1011 when the two
numbers are added using simple binary addition. If one of the numbers is (12)10, find the other.

(03)10

6. Perform the following operations using 2’s complement arithmetic:

(a) (+43)10 − (−53)10.
(b) (1ABC)16 + (1DEF)16.
(c) (3E91)16 − (1F93)16.

(a) 01100000; (b) (38AB)16; (c) (1EFE)16

Further Reading
1. Ercegovac, M. D. and Lang, T. (2003) Digital Arithmetic, Morgan Kaufmann Publishers, CA, USA.
2. Tocci, R. J. (2006) Digital Systems – Principles and Applications, Prentice-Hall Inc., NJ, USA.
3. Ashmila, E. M., Dlay, S. S. and Hinton, O. R. (2005) ‘Adder methodology and design using probabilistic multiple

carry estimates’. IET Computers and Digital Techniques, 152(6), pp. 697–703.
4. Lu, M. (2005) Arithmetic and Logic in Computer Systems, John Wiley & Sons, Inc., NJ, USA.

4
Logic Gates and Related Devices

Logic gates are electronic circuits that can be used to implement the most elementary logic expressions,
also known as Boolean expressions. The logic gate is the most basic building block of combinational
logic. There are three basic logic gates, namely the OR gate, the AND gate and the NOT gate. Other
logic gates that are derived from these basic gates are the NAND gate, the NOR gate, the EXCLUSIVE-
OR gate and the EXCLUSIVE-NOR gate. This chapter deals with logic gates and some related devices
such as buffers, drivers, etc., as regards their basic functions. The treatment of the subject matter is
mainly with the help of respective truth tables and Boolean expressions. The chapter is adequately
illustrated with the help of solved examples. Towards the end, the chapter contains application-relevant
information in terms of popular type numbers of logic gates from different logic families and their
functional description to help application engineers in choosing the right device for their application. Pin
connection diagrams are given on the companion website at http://www.wiley.com/go/maini_digital.
Different logic families used to hardware-implement different logic functions in the form of digital
integrated circuits are discussed in the following chapter.

4.1 Positive and Negative Logic
The binary variables, as we know, can have either of the two states, i.e. the logic ‘0’ state or the
logic ‘1’ state. These logic states in digital systems such as computers, for instance, are represented by
two different voltage levels or two different current levels. If the more positive of the two voltage or
current levels represents a logic ‘1’ and the less positive of the two levels represents a logic ‘0’, then
the logic system is referred to as a positive logic system. If the more positive of the two voltage or
current levels represents a logic ‘0’ and the less positive of the two levels represents a logic ‘1’, then
the logic system is referred to as a negative logic system. The following examples further illustrate this
concept.

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

70 Digital Electronics

If the two voltage levels are 0 V and +5 V, then in the positive logic system the 0 V represents a
logic ‘0’ and the +5 V represents a logic ‘1’. In the negative logic system, 0 V represents a logic ‘1’
and +5 V represents a logic ‘0’.

If the two voltage levels are 0 V and −5 V, then in the positive logic system the 0 V represents a
logic ‘1’ and the −5 V represents a logic ‘0’. In the negative logic system, 0 V represents a logic ‘0’
and −5 V represents a logic ‘1’.

It is interesting to note, as we will discover in the latter part of the chapter, that a positive OR is a
negative AND. That is, OR gate hardware in the positive logic system behaves like an AND gate in
the negative logic system. The reverse is also true. Similarly, a positive NOR is a negative NAND,
and vice versa.

4.2 Truth Table
A truth table lists all possible combinations of input binary variables and the corresponding outputs of
a logic system. The logic system output can be found from the logic expression, often referred to as
the Boolean expression, that relates the output with the inputs of that very logic system.

When the number of input binary variables is only one, then there are only two possible inputs, i.e.
‘0’ and ‘1’. If the number of inputs is two, there can be four possible input combinations, i.e. 00, 01, 10
and 11. Figure 4.1(b) shows the truth table of the two-input logic system represented by Fig. 4.1(a). The
logic system of Fig. 4.1(a) is such that Y = 0 only when both A = 0 and B = 0. For all other possible
input combinations, output Y = 1. Similarly, for three input binary variables, the number of possible
input combinations becomes eight, i.e. 000, 001, 010, 011, 100, 101, 110 and 111. This statement can
be generalized to say that, if a logic circuit has n binary inputs, its truth table will have 2n possible
input combinations, or in other words 2n rows. Figure 4.2 shows the truth table of a three-input logic
circuit, and it has 8 (= 23� rows. Incidentally, as we will see later in the chapter, this is the truth table
of a three-input AND gate. It may be mentioned here that the truth table of a three-input AND gate as
given in Fig. 4.2 is drawn following the positive logic system, and also that, in all further discussion
throughout the book, we will use a positive logic system unless otherwise specified.

Logic
System

A

0

0

1

1

B

0

1

0

1

Y

0

1

1

1

Y

(a)

(b)

A

B

Figure 4.1 Two-input logic system.

Logic Gates and Related Devices 71

A

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

C

0

1

0

1

0

1

0

1

Y

0

0

0

0

0

0

0

1

Figure 4.2 Truth table of a three-input logic system

4.3 Logic Gates
The logic gate is the most basic building block of any digital system, including computers. Each one
of the basic logic gates is a piece of hardware or an electronic circuit that can be used to implement
some basic logic expression. While laws of Boolean algebra could be used to do manipulation with
binary variables and simplify logic expressions, these are actually implemented in a digital system
with the help of electronic circuits called logic gates. The three basic logic gates are the OR gate, the
AND gate and the NOT gate.

4.3.1 OR Gate

An OR gate performs an ORing operation on two or more than two logic variables. The OR operation
on two independent logic variables A and B is written as Y = A+B and reads as Y equals A OR B
and not as A plus B. An OR gate is a logic circuit with two or more inputs and one output. The output
of an OR gate is LOW only when all of its inputs are LOW. For all other possible input combinations,
the output is HIGH. This statement when interpreted for a positive logic system means the following.
The output of an OR gate is a logic ‘0’ only when all of its inputs are at logic ‘0’. For all other possible
input combinations, the output is a logic ‘1’. Figure 4.3 shows the circuit symbol and the truth table
of a two-input OR gate. The operation of a two-input OR gate is explained by the logic expression

Y = A+B (4.1)

As an illustration, if we have four logic variables and we want to know the logical output of (A +
B +C +D�, then it would be the output of a four-input OR gate with A, B, C and D as its inputs.

Y=A+B
A

B

A

0

0

1

1

B

0

1

0

1

Y

0

1

1

1

Figure 4.3 Two-input OR gate.

72 Digital Electronics

Y=A+B+C
A
B
C

(a)

Y=A+B+C+D

A

C

(b)

D

A

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

C

0

1

0

1

0

1

0

1

Y

0

1

1

1

1

1

1

1

(c)

B

Figure 4.4 (a) Three-input OR gate, (b) four-input OR gate and (c) the truth table of a three-input OR gate.

Figures 4.4(a) and (b) show the circuit symbol of three-input and four-input OR gates. Figure 4.4(c)
shows the truth table of a three-input OR gate. Logic expressions explaining the functioning of three-
input and four-input OR gates are Y = A+B+C and Y = A+B+C +D.

Example 4.1

How would you hardware-implement a four-input OR gate using two-input OR gates only?

Solution
Figure 4.5(a) shows one possible arrangement of two-input OR gates that simulates a four-input OR
gate. A, B, C and D are logic inputs and Y 3 is the output. Figure 4.5(b) shows another possible
arrangement. In the case of Fig. 4.5(a), the output of OR gate 1 is Y 1 = (A + B�. The second

Y1A

B
C
D

1
2 Y2

3 Y3

(a)

Y1

Y2

Y3

A

B

C

D
(b)

3

1

2

Figure 4.5 Example 4.1.

Logic Gates and Related Devices 73

OR gate produces the output Y 2 = �Y 1 + C� = �A + B + C�. Similarly, the output of OR gate 3 is
Y 3 = �Y 2+D� = �A+B+C +D�. In the case of Fig. 4.5(b), the output of OR gate 1 is Y 1 = �A+B�.
The second OR gate produces the output Y 2 = �C +D�. Output Y 3 of the third OR gate is given by
�Y 1+Y 2� = �A+B+C +D�.

Example 4.2

Draw the output waveform for the OR gate and the given pulsed input waveforms of Fig. 4.6(a).

Solution
Figure 4.6(b) shows the output waveform. It can be drawn by following the truth table of the OR gate.

4.3.2 AND Gate

An AND gate is a logic circuit having two or more inputs and one output. The output of an AND gate
is HIGH only when all of its inputs are in the HIGH state. In all other cases, the output is LOW. When
interpreted for a positive logic system, this means that the output of the AND gate is a logic ‘1’ only
when all of its inputs are in logic ‘1’ state. In all other cases, the output is logic ‘0’. The logic symbol
and truth table of a two-input AND gate are shown in Figs 4.7(a) and (b) respectively. Figures 4.8(a)
and (b) show the logic symbols of three-input and four-input AND gates respectively. Figure 4.8(c)
gives the truth table of a four-input AND gate.

The AND operation on two independent logic variables A and B is written as Y = A�B and reads
as Y equals A AND B and not as A multiplied by B. Here, A and B are input logic variables and Y is
the output. An AND gate performs an ANDing operation:

a b c d e f g h i j k

'1'

'0'
'1'

'0'

(a)t

a b c d e f g h i j k

(b)

'1'

'0'

Figure 4.6 Example 4.2.

74 Digital Electronics

A

0

0

1

1

B

0

1

0

1

Y

0

0

0

1

(b)

A

B
Y=A.B

(a)

Figure 4.7 Two-input AND gate.

A
B Y=A.B.C

(a)

C

A
B Y=A.B.C.D

(b)

C
D

A

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

B

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

C

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Y

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

(c)

Figure 4.8 (a) Three-input AND gate, (b) four-input AND gate and (c) the truth table of a four-input AND gate.

Logic Gates and Related Devices 75

• for a two-input AND gate, Y = A�B;
• for a three-input AND gate, Y = A�B�C;
• for a four-input AND gate, Y = A�B�C�D.

If we interpret the basic definition of OR and AND gates for a negative logic system, we have an
interesting observation. We find that an OR gate in a positive logic system is an AND gate in a negative
logic system. Also, a positive AND is a negative OR.

Example 4.3

Show the logic arrangement for implementing a four-input AND gate using two-input AND gates only.

Solution
Figure 4.9 shows the hardware implementation of a four-input AND gate using two-input AND gates.
The output of AND gate 1 is Y 1 = A�B� The second AND gate produces an output Y 2 given by
Y 2 = Y 1�C = A�B�C. Similarly, the output of AND gate 3 is Y = Y 2.D = A�B�C�D and hence the
result.

4.3.3 NOT Gate

A NOT gate is a one-input, one-output logic circuit whose output is always the complement of the
input. That is, a LOW input produces a HIGH output, and vice versa. When interpreted for a positive
logic system, a logic ‘0’ at the input produces a logic ‘1’ at the output, and vice versa. It is also known
as a ‘complementing circuit’ or an ‘inverting circuit’. Figure 4.10 shows the circuit symbol and the
truth table.

The NOT operation on a logic variable X is denoted as X or X′. That is, if X is the input to a NOT
circuit, then its output Y is given by Y = X or X′ and reads as Y equals NOT X. Thus, if X = 0� Y = 1
and if X = 1� Y = 0.

Example 4.4

For the logic circuit arrangements of Figs 4.11(a) and (b), draw the output waveform.

Solution
In the case of the OR gate arrangement of Fig. 4.11(a), the output will be permanently in logic ‘1’
state as the two inputs can never be in logic ‘0’ state together owing to the presence of the inverter.
In the case of the AND gate arrangement of Fig. 4.11(b), the output will be permanently in logic ‘0’
state as the two inputs can never be in logic ‘1’ state together owing to the presence of the inverter.

A

B

Y1

C
D

Y2

Y=A.B.C.D

1
2

3

Figure 4.9 Implementation of a four-input AND gate using two-input AND gates.

76 Digital Electronics

Y=X

X

X

(a)

X

0

1

Y

1

0

(b)

Y=X

Figure 4.10 (a) Circuit symbol of a NOT circuit and (b) the truth table of a NOT circuit.

(a)

(b)

Figure 4.11 Example 4.4.

4.3.4 EXCLUSIVE-OR Gate

The EXCLUSIVE-OR gate, commonly written as EX-OR gate, is a two-input, one-output gate. Figures
4.12(a) and (b) respectively show the logic symbol and truth table of a two-input EX-OR gate. As can
be seen from the truth table, the output of an EX-OR gate is a logic ‘1’ when the inputs are unlike and
a logic ‘0’ when the inputs are like. Although EX-OR gates are available in integrated circuit form
only as two-input gates, unlike other gates which are available in multiple inputs also, multiple-input
EX-OR logic functions can be implemented using more than one two-input gates. The truth table of
a multiple-input EX-OR function can be expressed as follows. The output of a multiple-input EX-OR
logic function is a logic ‘1’ when the number of 1s in the input sequence is odd and a logic ‘0’ when
the number of 1s in the input sequence is even, including zero. That is, an all 0s input sequence also
produces a logic ‘0’ at the output. Figure 4.12(c) shows the truth table of a four-input EX-OR function.
The output of a two-input EX-OR gate is expressed by

Y = �A⊕B� = AB+AB (4.2)

Logic Gates and Related Devices 77

A

B
Y=A B+

A

0

0

1

1

B

0

1

0

1

Y

0

1

1

0

(a)

(b)

A

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

B

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

C

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Y

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

(c)

Figure 4.12 (a) Circuit symbol of a two-input EXCLUSIVE-OR gate, (b) the truth table of a two-input
EXCLUSIVE-OR gate and (c) the truth table of a four-input EXCLUSIVE-OR gate

Example 4.5

How do you implement three-input and four-input EX-OR logic functions with the help of two-input
EX-OR gates?

Solution
Figures 4.13(a) and (b) show the implementation of a three-input EX-OR logic function and a four-input
EX-OR logic function using two-input logic gates:

• For Fig. 4.13(a), the output Y 1 is given by A ⊕ B. The final output Y is given by Y = �Y 1⊕C� =
�A⊕B�⊕C = A⊕B⊕C.

• Figure 4.13(b) can be explained on similar lines.

78 Digital Electronics

A

B

Y1

Y

(a)

Y1
Y2

Y

A

B
C
D

(b)

C

Figure 4.13 (a) Three-input EX-OR gate and (b) a four-input EX-OR gate.

Example 4.6

How can you implement a NOT circuit using a two-input EX-OR gate?

Solution
Refer to the truth table of a two-input EX-OR gate reproduced in Fig. 4.14(a). It is clear from the truth
table that, if one of the inputs of the gate is permanently tied to logic ‘1’ level, then the other input
and output perform the function of a NOT circuit. Figure 4.14(b) shows the implementation.

Output
Input

'1'

(b)

A

0

0

1

1

B

0

1

0

1

Y

0

1

1

0

(a)

Figure 4.14 Implementation of a NOT circuit using an EX-OR gate.

Logic Gates and Related Devices 79

4.3.5 NAND Gate

NAND stands for NOT AND. An AND gate followed by a NOT circuit makes it a NAND gate [Fig.
4.15(a)]. Figure 4.15(b) shows the circuit symbol of a two-input NAND gate. The truth table of a
NAND gate is obtained from the truth table of an AND gate by complementing the output entries [Fig.
4.15(c)]. The output of a NAND gate is a logic ‘0’ when all its inputs are a logic ‘1’. For all other
input combinations, the output is a logic ‘1’. NAND gate operation is logically expressed as

Y = A�B (4.3)

In general, the Boolean expression for a NAND gate with more than two inputs can be written as

Y = �A�B�C�D���� (4.4)

4.3.6 NOR Gate

NOR stands for NOT OR. An OR gate followed by a NOT circuit makes it a NOR gate [Fig. 4.16(a)].
The truth table of a NOR gate is obtained from the truth table of an OR gate by complementing the
output entries. The output of a NOR gate is a logic ‘1’ when all its inputs are logic ‘0’. For all other input
combinations, the output is a logic ‘0’. The output of a two-input NOR gate is logically expressed as

Y = �A+B� (4.5)

A

0

0

1

1

B

0

1

0

1

Y

1

1

1

0

(c)

A

B

(a)

A

B

(b)

Y=A.B

Figure 4.15 (a) Two-input NAND implementation using an AND gate and a NOT circuit, (b) the circuit symbol
of a two-input NAND gate and (c) the truth table of a two-input NAND gate.

80 Digital Electronics

Y
A

(a)

B

A

(b)

B
Y=A+B

A

0

0

1

1

B

0

1

0

1

Y

1

0

0

0

(c)

Figure 4.16 (a) Two-input NOR implementation using an OR gate and a NOT circuit, (b) the circuit symbol of
a two-input NOR gate and (c) the truth table of a two-input NOR gate.

In general, the Boolean expression for a NOR gate with more than two inputs can be written as

Y = �A+B+C +D���� (4.6)

4.3.7 EXCLUSIVE-NOR Gate

EXCLUSIVE-NOR (commonly written as EX-NOR) means NOT of EX-OR, i.e. the logic gate that
we get by complementing the output of an EX-OR gate. Figure 4.17 shows its circuit symbol along
with its truth table.

The truth table of an EX-NOR gate is obtained from the truth table of an EX-OR gate by
complementing the output entries. Logically,

Y = �A⊕B� = �A�B+A�B� (4.7)

(a)

Y=A B+

B

A

A

0

0

1

1

B

0

1

0

1

Y

1

0

0

1

(b)

Figure 4.17 (a) Circuit symbol of a two-input EXCLUSIVE-NOR gate and (b) the truth table of a two-input
EXCLUSIVE-NOR gate.

Logic Gates and Related Devices 81

The output of a two-input EX-NOR gate is a logic ‘1’ when the inputs are like and a logic ‘0’
when they are unlike. In general, the output of a multiple-input EX-NOR logic function is a logic
‘0’ when the number of 1s in the input sequence is odd and a logic ‘1’ when the number of 1s in the
input sequence is even including zero. That is, an all 0s input sequence also produces a logic ‘1’ at
the output.

Example 4.7

Show the logic arrangements for implementing:

(a) a four-input NAND gate using two-input AND gates and NOT gates;
(b) a three-input NAND gate using two-input NAND gates;
(c) a NOT circuit using a two-input NAND gate;
(d) a NOT circuit using a two-input NOR gate;
(e) a NOT circuit using a two-input EX-NOR gate.

Solution
(a) Figure 4.18(a) shows the arrangement. The logic diagram is self-explanatory. The first step is to get

a four-input AND gate using two-input AND gates. The output thus obtained is then complemented
using a NOT circuit as shown.

(b) Figure 4.18(b) shows the arrangement, which is again self-explanatory. The first step is to get a
two-input AND from a two-input NAND. The output of the two-input AND gate and the third
input then feed the inputs of another two-input NAND to get the desired output.

(c) Shorting the inputs of the NAND gives a one-input, one-output NOT circuit. This is because when
all inputs to a NAND are at logic ‘0’ level the output is a logic ‘1’, and when all inputs to a NAND
are at logic ‘1’ level the output is a logic ‘0’. Figure 4.18(c) shows the implementation.

(d) Again, shorting the inputs of a NOR gate gives a NOT circuit. From the truth table of a NOR gate
it is evident that an all 0s input to a NOR gate gives a logic ‘1’ output and an all 1s input gives a
logic ‘0’ output. Figure 4.18(d) shows the implementation.

(e) It is evident from the truth table of a two-input EX-NOR gate that, if one of the inputs is permanently
tied to a logic ‘0’ level and the other input is treated as the input, then it behaves as a NOT circuit
between input and output [Fig. 4.18(e)]. When the input is a logic ‘0’, the two inputs become 00,
which produces a logic ‘1’ at the output. When the input is at logic ‘1’ level, a 01 input produces
a logic ‘0’ at the output.

Example 4.8

How do you implement a three-input EX-NOR function using only two-input EX-NOR gates?

Solution
Figure 4.19 shows the arrangement. The first two EX-NOR gates implement a two-input EX-OR
gate using two-input EX-NOR gates. The second EX-NOR gate here has been wired as a NOT
circuit. The output of the second gate and the third input are fed to the two inputs of the third
EX-NOR gate.

82 Digital Electronics

A

B

C
D

Y=A.B.C.D

(a)

Y=A.B.C

(b)

A.B A.BA

B
C

A

(c)

Y=A A

(d)

(e)

Input A

'0'

Y=A

Y=A

Figure 4.18 Example 4.7.

Figure 4.19 Example 4.8.

4.3.8 INHIBIT Gate

There are many situations in digital circuit design where the passage of a logic signal needs to be
either enabled or inhibited depending upon certain other control inputs. INHIBIT here means that the
gate produces a certain fixed logic level at the output irrespective of changes in the input logic level.
As an illustration, if one of the inputs of a four-input NOR gate is permanently tied to logic ‘1’ level,
then the output will always be at logic ‘0’ level irrespective of the logic status of other inputs. This
gate will behave as a NOR gate only when this control input is at logic ‘0’ level. This is an example of
the INHIBIT function. The INHIBIT function is available in integrated circuit form for an AND gate,

Logic Gates and Related Devices 83

which is basically an AND gate with one of its inputs negated by an inverter. The negated input acts
to inhibit the gate. In other words, the gate will behave like an AND gate only when the negated input
is driven to a logic ‘0’. Figure 4.20 shows the circuit symbol and truth table of a four-input INHIBIT
gate.

Example 4.9

Refer to the INHIBIT gate of Fig. 4.21(a). If the waveform of Fig. 4.21(b) is applied to the INHIBIT
input, draw the waveform at the output.

Solution
Since all other inputs of the gate have been permanently tied to logic ‘1’ level, a logic ‘0’ at the
INHIBIT input would produce a logic ‘1’ at the output and a logic ‘1’ at the INHIBIT input would
produce a logic ‘0’ at the output. The output waveform is therefore the inversion of the input waveform
and is shown in Fig. 4.22.

A

YB
C
D

(a)

A

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

B

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

C

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Y

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

(b)

Figure 4.20 INHIBIT gate.

84 Digital Electronics

a b c d e f

'1''1'

(b)(a)

Figure 4.21 Example 4.9.

a b c d e
'0’

'1'

f

Figure 4.22 Solution to example 4.9.

Example 4.10

Refer to the INHIBIT gate shown in Fig. 4.23(a) and the INHIBIT input waveform shown in Fig.
4.23(b). Sketch the output waveform.

Solution
The output will always be at logic ‘1’ level as two of the inputs of the logic gate, which is a NAND,
are permanently tied to logic ‘0’ level. This would have been so even if one of the inputs of the gate
were at logic ‘0’ level.

(a)

I/P

'1' '0'

Logic '1'

Logic '0'
1 2 3 4 5

t(ms)

(b)

Figure 4.23 Example 4.10.

Logic Gates and Related Devices 85

4.4 Universal Gates
OR, AND and NOT gates are the three basic logic gates as they together can be used to construct
the logic circuit for any given Boolean expression. NOR and NAND gates have the property that they
individually can be used to hardware-implement a logic circuit corresponding to any given Boolean
expression. That is, it is possible to use either only NAND gates or only NOR gates to implement any
Boolean expression. This is so because a combination of NAND gates or a combination of NOR gates
can be used to perform functions of any of the basic logic gates. It is for this reason that NAND and
NOR gates are universal gates.

As an illustration, Fig. 4.24 shows how two-input NAND gates can be used to construct a NOT circuit
[Fig. 4.24(a)], a two-input AND gate [Fig. 4.24(b)] and a two-input OR gate [Fig. 4.24(c)]. Figure 4.25
shows the same using NOR gates. Understanding the conversion of NAND to OR and NOR to AND
requires the use of DeMorgan’s theorem, which is discussed in Chapter 6 on Boolean algebra.

4.5 Gates with Open Collector/Drain Outputs
These are gates where we need to connect an external resistor, called the pull-up resistor, between the
output and the DC power supply to make the logic gate perform the intended logic function. Depending
on the logic family used to construct the logic gate, they are referred to as gates with open collector
output (in the case of the TTL logic family) or open drain output (in the case of the MOS logic family).
Logic families are discussed in detail in Chapter 5.

The advantage of using open collector/open drain gates lies in their capability of providing an
ANDing operation when outputs of several gates are tied together through a common pull-up resistor,

Y=A

(a)

A

(b)

A

B

Y=A.B

A

B

A

B

Y=A+B

(c)

Figure 4.24 Implementation of basic logic gates using only NAND gates.

86 Digital Electronics

A

(a)

Y=A

A

B

Y=A+B

(b)

B

A

(c)

Y=A.B
A

B

Figure 4.25 Implementation of basic logic gates using only NOR gates.

without having to use an AND gate for the purpose. This connection is also referred to as WIRE-AND
connection. Figure 4.26(a) shows such a connection for open collector NAND gates. The output in this
case would be

Y = AB�CD�EF (4.8)

A

B

C

D

E

F

+V

Pull-up
Resistor

AB.CD.EF

(a)

Figure 4.26 WIRE-AND connection with open collector/drain devices.

Logic Gates and Related Devices 87

A

B

C

+V

Pull-up
Resistor

(b)

A.B.C

Figure 4.26 (continued).

Figure 4.26(b) shows a similar arrangement for NOT gates. The disadvantage is that they are relatively
slower and noisier. Open collector/drain devices are therefore not recommended for applications where
speed is an important consideration.

4.6 Tristate Logic Gates
Tristate logic gates have three possible output states, i.e. the logic ‘1’ state, the logic ‘0’ state and
a high-impedance state. The high-impedance state is controlled by an external ENABLE input. The
ENABLE input decides whether the gate is active or in the high-impedance state. When active, it can
be ‘0’ or ‘1’ depending upon input conditions. One of the main advantages of these gates is that their
inputs and outputs can be connected in parallel to a common bus line. Figure 4.27(a) shows the circuit
symbol of a tristate NAND gate with active HIGH ENABLE input, along with its truth table. The one
shown in Fig. 4.27(b) has active LOW ENABLE input. When tristate devices are paralleled, only one
of them is enabled at a time. Figure 4.28 shows paralleling of tristate inverters having active HIGH
ENABLE inputs.

4.7 AND-OR-INVERT Gates
AND-OR and OR-AND gates can be usefully employed to implement sum-of-products and product-
of-sums Boolean expressions respectively. Figures 4.29(a) and (b) respectively show the symbols of
AND-OR-INVERT and OR-AND-INVERT gates.

Another method for designating the gates shown in Fig. 4.29 is to call them two-wide, two-input
AND-OR-INVERT or OR-AND-INVERT gates as the case may be. The gate is two-wide as there
are two gates at the input, and two-input as each of the gates has two inputs. Other varieties such
as two-wide, four-input AND-OR-INVERT (Fig. 4.30) and four-wide, two-input AND-OR-INVERT
(Fig. 4.31) are also available in IC form.

88 Digital Electronics

A

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

E

0

1

0

1

0

1

0

1

Y

Z

1

Z

1

Z

1

Z

0

(a)

A
Y

B

E

A
Y

B

E

A

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

E

0

1

0

1

0

1

0

1

Y

1

Z

1

Z

1

Z

0

Z

(b)

Z= High Impedance state

Z= High Impedance state

Figure 4.27 Tristate devices.

4.8 Schmitt Gates
The logic gates discussed so far have a single-input threshold voltage level. This threshold is the
same for both LOW-to-HIGH and HIGH-to-LOW output transitions. This threshold voltage lies
somewhere between the highest LOW voltage level and the lowest HIGH voltage level guaranteed by
the manufacturer of the device. These logic gates can produce an erratic output when fed with a slow

Logic Gates and Related Devices 89

A

B

C

EA

EB

EC

To other
circuits

Common
Bus

Figure 4.28 Paralleling of tristate inverters.

A

B

C

D

(a)

A

B

C

D

(b)

(AB+CD)

(A+B)(C+D)

Figure 4.29 AND-OR-INVERT and OR-AND-INVERT gates.

A
B
C
D

E
F
G
H

(ABCD+EFGH)

Figure 4.30 Two-wide, four-input AND-OR-INVERT gate.

90 Digital Electronics

A

B

C

D

E

F

G

(AB+CD+EF+GH)

H

Figure 4.31 Four-wide, two-input AND-OR-INVERT gate.

varying input. Figure 4.32 shows the response of an inverter circuit when fed with a slow varying
input both in the case of an ideal signal [Fig. 4.32(a)] and in the case of a practical signal having
a small amount of AC noise superimposed on it [Fig. 4.32(b)]. A possible solution to this problem
lies in having two different threshold voltage levels, one for LOW-to-HIGH transition and the other
for HIGH-to-LOW transition, by introducing some positive feedback in the internal gate circuitry, a
phenomenon called hysteresis.

There are some logic gate varieties, mainly in NAND gates and inverters, that are available
with built-in hysteresis. These are called Schmitt gates, which interpret varying input voltages
according to two threshold voltages, one for LOW-to-HIGH and the other for HIGH-to-LOW
output transition. Figures 4.33(a) and (b) respectively show circuit symbols of Schmitt NAND and
Schmitt inverter. Schmitt gates are distinguished from conventional gates by the small ‘hysteresis’
symbol reminiscent of the B − H loop for a ferromagnetic material. Figure 4.33(c) shows typical
transfer characteristics for such a device. The difference between the two threshold levels is

V
ol

ta
ge

time

Output

Input

Threshold

(a)

Figure 4.32 Response of conventional inverters to slow varying input.

Logic Gates and Related Devices 91

V
ol

ta
ge

time

Input

Threshold

Output

(b)

Figure 4.32 (continued).

the hysteresis. These characteristics have been reproduced from the data sheet of IC 74LS132,
which is a quad two-input Schmitt NAND belonging to the low-power Schottky TTL family.
Figure 4.33(d) shows the response of a Schmitt inverter to a slow varying noisy input signal.
We will learn more about different logic families in Chapter 5. It may be mentioned here that
hysteresis increases noise immunity and is used in applications where noise is expected on input
signal lines.

4.9 Special Output Gates
There are many applications where it is desirable to have both noninverted and inverted outputs.
Examples include a single-input gate that is both an inverter and a noninverting buffer, or a two-input
logic gate that is both an AND and a NAND. Such gates are called complementary output gates and
are particularly useful in circuits where PCB space is at a premium. These are also useful in circuits
where the addition of an inverter to obtain the inverted output introduces an undesirable time delay
between inverted and noninverted outputs. Figure 4.34 shows the circuit symbols of complementary
buffer, AND, OR and EX-OR gates.

Example 4.11

Draw the circuit symbols for (a) a two-wide, four-input OR-AND-INVERT gate and (b) a four-wide,
two-input OR-AND-INVERT gate.

Solution
(a) Refer to Fig. 4.35(a).
(b) Refer to Fig. 4.35(b).

92 Digital Electronics

(a)

(b)

V (volts)in

V (volts)o

4

0.2
0.8 1.6

(c)

V
ol

ta
ge

time

Lower threshold

Output

(d)

Upper threshold

Input

Figure 4.33 Schmitt gates.

Logic Gates and Related Devices 93

Figure 4.34 Complementary gates.

Y

A
B

D
C

E
F

H
G

(a)

A

B

C

D

E

F

G

H

Y

(b)

Figure 4.35 Example 4.11.

Example 4.12

Refer to Fig. 4.36(a). If the NAND gate used has the transfer characteristics of Fig. 4.36(b), sketch the
expected output waveform.

Solution
The output waveform is shown in Fig. 4.36(c). The output is initially in logic ‘1’ state. It goes from
logic ‘1’ to logic ‘0’ state as the input exceeds 2 V. The output goes from logic ‘0’ to logic ‘1’ state
as the input drops below 1 V.

94 Digital Electronics

'1'

I/P

I/P
(Volts)

1 2 3 4
t(ms)

4

(a)

V (volts)in

O/P

Logic '1'

1 2

Logic '1'

Logic '0'

(c)

t (ms)

t (ms)

O/P

I/P
(Volts)

2

1

(b)

Figure 4.36 Example 4.12.

Logic Gates and Related Devices 95

A

B

C

D

+V

Y

Figure 4.37 Example 4.13.

Example 4.13

Refer to the logic arrangement of Fig. 4.37. Write the logic expression for the output Y.

Solution
The NAND gates used in the circuit are open collector gates. Paralleling of the two NAND gates at
the input leads to a WIRE-AND connection. Therefore the logic expression at the point where the two
outputs combine is given by the equation

�AB�CD� (4.9)

Using DeMorgan’s theorem (discussed in Chapter 6 on Boolean algebra),

�AB�CD� = �AB+CD� (4.10)

The third NAND is wired as an inverter. Therefore, the final output can be written as

Y = �AB+CD� (4.11)

4.10 Fan-Out of Logic Gates
It is a common occurrence in logic circuits that the output of one logic gate feeds the inputs of several
others. It is not practical to drive the inputs of an unlimited number of logic gates from the output of
a single logic gate. This is limited by the current-sourcing capability of the output when the output of
the logic gate is HIGH and by the current-sinking capability of the output when it is LOW, and also
by the requirement of the inputs of the logic gates being fed in the two states.

To illustrate the point further, let us say that the current-sourcing capability of a certain NAND gate
is IOH when its output is in the logic HIGH state and that each of the inputs of the logic gate that it is
driving requires an input current IIH , as shown in Fig. 4.38(a). In this case, the output of the logic gate
will be able to drive a maximum of IOH /IIH inputs when it is in the logic HIGH state. When the output
of the driving logic gate is in the logic LOW state, let us say that it has a maximum current-sinking
capability IOL, and that each of the inputs of the driven logic gates requires a sinking current IIL, as
shown in Fig. 4.38(b). In this case the output of the logic gate will be able to drive a maximum of

96 Digital Electronics

IIH

IIH

IIH

IOH

(a)

IIL

IIL

IIL

IOL

(b)

Figure 4.38 Fan-out of logic gates.

IOL/IIL inputs when it is in the logic LOW state. Thus, the number of logic gate inputs that can be
driven from the output of a single logic gate will be IOH /IIH in the logic HIGH state and IOL/IIL in
the logic LOW state. The number of logic gate inputs that can be driven from the output of a single
logic gate without causing any false output is called fan-out. It is the characteristic of the logic family
to which the device belongs. If in a certain case the two values IOH /IIH and IOL/IIL are different, the
fan-out is taken as the smaller of the two. Figure 4.39 shows the actual circuit diagram where the output
of a single NAND gate belonging to a standard TTL logic family feeds the inputs of multiple NAND
gates belonging to the same family when the output of the feeding gate is in the logic HIGH state
[Fig. 4.39(a)] and the logic LOW state [Fig. 4.39(b)]. We will learn in Chapter 5 on logic families that
the maximum HIGH-state output sourcing current (IOH�max and maximum HIGH-state input current
(IIH�max specifications of standard TTL family devices are 400 �A and 40 �A respectively. Also, the
maximum LOW-state output sinking current (IOL�max and maximum LOW-state input current (IIL�max

specifications are 16 mA and 1.6 mA respectively. Considering both the sourcing and sinking capability
of standard TTL family devices, we obtain a fan-out figure of 10 both for HIGH and for LOW logic
states. If the maximum sourcing and sinking current specifications are exceeded, the output voltage
levels in the logic HIGH and LOW states will go out of the specified ranges.

Logic Gates and Related Devices 97

IIHIIH IIHIIH IIHIIH

OFF

(a)

IILIIL

ON

(b)

OFF

IILIIL IILIIL

IOLI

+V +V +V +V

+V +V +V +V

IOH

ON

Figure 4.39 Fan-out of the standard TTL logic family.

Example 4.14

A certain logic family has the following input and output current specifications:

1. The maximum output HIGH-state current = 1 mA.
2. The maximum output LOW-state current = 20 mA.
3. The maximum input HIGH-state current = 50 �A.
4. The maximum input LOW-state current = 2 mA.

98 Digital Electronics

The output of an inverter belonging to this family feeds the clock inputs of various flip-flops belonging
to the same family. How many flip-flops can be driven by the output of this inverter providing the clock
signal? Incidentally, the data given above are taken from the data sheet of a Schottky TTL family.

Solution
• The HIGH-state fan-out = �1/0�05� = 20 and the LOW-state fan-out = �20/2� = 10.
• Since the lower of the two fan-out values is 10, the inverter output can drive a maximum of 10

flip-flops.

4.11 Buffers and Transceivers
Logic gates, discussed in the previous pages, have a limited load-driving capability. A buffer has a
larger load-driving capability than a logic gate. It could be an inverting or noninverting buffer with a
single input, a NAND buffer, a NOR buffer, an OR buffer or an AND buffer. ‘Driver’ is another name
for a buffer. A driver is sometimes used to designate a circuit that has even larger drive capability than
a buffer. Buffers are usually tristate devices to facilitate their use in bus-oriented systems. Figure 4.40
shows the symbols and functional tables of inverting and noninverting buffers of the tristate type.

A transceiver is a bidirectional buffer with additional direction control and ENABLE inputs. It allows
flow of data in both directions, depending upon the logic status of the control inputs. Transceivers,
like buffers, are tristate devices to make them compatible with bus-oriented systems. Figures 4.41(a)
and (b) respectively show the circuit symbols of inverting and noninverting transceivers. Figure 4.42
shows a typical logic circuit arrangement of a tristate noninverting transceiver with its functional table
[Fig. 4.42(b)].

Some of the common applications of inverting and noninverting buffers are as follows. Buffers are
used to drive circuits that need more drive current. Noninverting buffers are also used to increase the
fan-out of a given logic gate. This means that the buffer can be used to increase the number of logic
gate inputs to which the output of a given logic gate can be connected. Yet another application of a
noninverting buffer is its use as a delay line. It delays the signal by an amount equal to the propagation
delay of the device. More than one device can be connected in cascade to get larger delays.

A

E

Y A

E

Y A

E

Y A

E

Y

A

X

0

1

E

0

1

1

Y

Z

1

0

A

X

0

1

E

1

0

0

Y

Z

1

0

A

X

0

1

E

0

1

1

Y

Z

0

1

A

X

0

1

E

1

0

0

Y

Z

0

1

Z = High Impedance State

Figure 4.40 (a) Inverting tristate buffers and (b) noninverting tristate buffers.

Logic Gates and Related Devices 99

A

B

(a)

A

B

(b)

Figure 4.41 (a) Inverting transceivers and (b) noninverting transceivers.

A B

(a)

E1

E2

Figure 4.42 Tristate noninverting transceiver.

100 Digital Electronics

E1
L

L

H

E2
L

H

X

Operation

Data flow from B to A

Data flow from A to B

Isolation

(b)

Figure 4.42 (continued).

4.12 IEEE/ANSI Standard Symbols
The symbols used thus far in the chapter for representing different types of gate are the ones that are
better known to all of us and have been in use for many years. Each logic gate has a symbol with a
distinct shape. However, for more complex logic devices, e.g. sequential logic devices like flip-flops,
counters, registers or arithmetic circuits, such as adders, subtractors, etc., these symbols do not carry
any useful information. A new set of standard symbols was introduced in 1984 under IEEE/ANSI
Standard 91–1984. The logic symbols given under this standard are being increasingly used now and
have even started appearing in the literature published by manufacturers of digital integrated circuits.
The utility of this new standard will be more evident in the following paragraphs as we go through its
salient features and illustrate them with practical examples.

4.12.1 IEEE/ANSI Standards – Salient Features

This standard uses a rectangular symbol for all devices instead of a different symbol shape for each
device. For instance, all logic gates (OR, AND, NAND, NOR) will be represented by a rectangular
block.

A right triangle is used instead of a bubble to indicate inversion of a logic level. Also, the right
triangle is used to indicate whether a given input or output is active LOW. The absence of a triangle
indicates an active HIGH input or output. As far as logic gates are concerned, a special notation inside
the rectangular block describes the logic relationship between output and inputs. A ‘1’ inside the block
indicates that the device has only one input. An AND operation is expressed by ‘&’, and an OR
operation is expressed by the symbol ‘≥1’. Figure 4.43 shows the ANSI counterparts of various logic
gates. A ‘≥1’ symbol indicates that the output is HIGH when one or more than one input is HIGH.
An ‘&’ symbol indicates that the output is HIGH only when all the inputs are HIGH. The two-input
EX-OR is represented by the symbol ‘=1’ which implies that the output is HIGH only when one of
its inputs is HIGH.

A special dependency notation system is used to indicate how the outputs depend upon the input.
This notation contains almost the entire functional information of the logic device in question. This
will be more clear as we illustrate this new standard with the help of ANSI symbols for some of the
actual devices belonging to the category of flip-flops, counters, etc., in the following chapters. All
those control inputs that control the timing of change in output states as per logic status of inputs are
designated by the letter ‘C’. These are ENABLE inputs in latches or CLOCK inputs in flip-flops.

Most of the digital ICs contain more than one similar function on one chip such as IC 7400 (quad
two-input NAND), IC 7404 (hex inverter), IC 74112 (dual-edge triggered JK flip-flop), IC 7474 (dual
D-type latch), IC 7475 (quad D-type latch) and so on. Those inputs to such ICs that are common to

Logic Gates and Related Devices 101

Figure 4.43 IEEE / ANSI symbols.

all the functional blocks or in other words similarly affect various individual but similar functions are
represented by a separate notched rectangle on the top of the main rectangle.

4.12.2 ANSI Symbols for Logic Gate ICs

Figure 4.44 shows the ANSI symbol for IC 7400, which is a quad two-input NAND gate. The figure
is self-explanatory with the background given in the preceding paragraphs. Any other similar device,
i.e. another quad two-input NAND gate belonging to another logic family, would also be represented
by the same ANSI symbol. As another illustration, Fig. 4.45 shows the ANSI symbol for IC 7420,
which is a dual four-input NAND gate.

102 Digital Electronics

(1)

(2)

(4)

(5)

(9)

(10)

(12)

(13)

(3)

(6)

(8)

(11)

1Y

2Y

3Y

4Y

&
1A

1B

2A

2B

3A

3B

4A

4B

Figure 4.44 ANSI symbol for IC 7400.

(1)

(2)

(4)

(5)

(9)

(10)

(12)

(13)

&

(6)

(8)
2Y

1Y

1A

1B

1C

1D

2A

2B

2C

2D

Figure 4.45 ANSI symbol for IC 7420.

Example 4.15

Draw the IEEE/ANSI symbol representation of the logic circuit shown in Fig. 4.46.

Solution
Figure 4.47 shows the circuit using IEEE/ANSI symbols.

4.13 Some Common Applications of Logic Gates
In this section, we will briefly look at some common applications of basic logic gates. The applications
discussed here include those where these devices are used to provide a specific function in a larger
digital circuit. These also include those where one or more logic gates, along with or without some
external components, can be used to build some digital building blocks.

Logic Gates and Related Devices 103

A

B
Y

Figure 4.46 Example 4.15.

&

A

B

>1 1

=1 Y

Figure 4.47 Solution to example 4.15.

4.13.1 OR Gate

An OR gate can be used in all those situations where the occurrence of any one or more than one
event needs to be detected or acted upon. One such example is an industrial plant where any one or
more than one parameter exceeding a preset limiting value should lead to initiation of some kind of
protective action. Figure 4.48 shows a typical schematic where the OR gate is used to detect either
temperature or pressure exceeding a preset threshold value and produce the necessary command signal
for the system.

Shutdown
command

PLANT

Temp Pressure

Reference

Reference

Comparators

+

–

+

–

Sensors

Figure 4.48 Application of an OR gate.

104 Digital Electronics

4.13.2 AND Gate

An AND gate is commonly used as an ENABLE or INHIBIT gate to allow or disallow passage of
data from one point in the circuit to another. One such application of enabling operation, for instance,
is in the measurement of the frequency of a pulsed waveform or the width of a given pulse with the
help of a counter. In the case of frequency measurement, a gating pulse of known width is used to
enable the passage of the pulse waveform to the counter’s clock input. In the case of pulse width
measurement, the pulse is used to enable the passage of the clock input to the counter. Figure 4.49
shows the arrangement.

4.13.3 EX-OR/EX-NOR Gate

EX-OR and EX-NOR logic gates are commonly used in parity generation and checking circuits. Figures
4.50(a) and (b) respectively show even and odd parity generator circuits for four-bit data. The circuits
are self-explanatory.

The parity check operation can also be performed by similar circuits. Figures 4.51(a) and (b)
respectively show simple even and odd parity check circuits for a four-bit data stream. In the circuits
shown in Fig. 4.51, a logic ‘0’ at the output signifies correct parity and a logic ‘1’ signifies one-bit
error. Parity generator/checker circuits are available in IC form. 74180 in TTL and 40101 in CMOS
are nine-bit odd/even parity generator/checker ICs. Parity generation and checking circuits are further
discussed in Chapter 7 on arithmetic circuits.

Figure 4.49 Application of an AND gate.

Figure 4.50 Parity generation using EX-OR/EX-NOR gates.

Logic Gates and Related Devices 105

Figure 4.51 Parity check using EX-OR and EX-NOR gates.

4.13.4 Inverter

CMOS inverters are commonly used to build square-wave oscillators for generating clock signals.
These clock generators offer good stability, operation over a wide supply voltage range (3–15 V) and
frequency range (1 Hz to in excess of 15 MHz), low power consumption and an easy interface to other
logic families.

The most fundamental circuit is the ring configuration of any odd number of inverters. Figure 4.52
shows one such circuit using three inverters. Inverting gates such as NAND and NOR gates can also
be used instead. This configuration does not make a practical oscillator circuit as its frequency of
oscillation is highly susceptible to variation with temperature, supply voltage and external loading. The
frequency of oscillation is given by the equation

f = 1/�2ntp� (4.12)

where n is the number of inverters and tp is the propagation delay per gate.

Output

Figure 4.52 Square-wave oscillator using a ring configuration.

106 Digital Electronics

Figure 4.53(a) shows a practical oscillator circuit. The frequency of oscillation in this case is given
by Equation (4.13) (the duty cycle of the waveform is approximately 50 %):

f = 1/2C�0�405Req +0�693R1� (4.13)

where Req = R1.R2/(R1 +R2�.
Figure 4.53(b) shows another circuit using two inverters instead of three inverters. The frequency

of oscillation of this circuit is given by the equation

f = 1/2�2RC (4.14)

The circuits shown in Fig. 4.53 are not as sensitive to supply voltage variations as the one shown in
Fig. 4.52. Figure 4.54 shows yet another circuit that is configured around a single Schmitt inverter. The
capacitor charges (when the output is HIGH) and discharges (when the output is LOW) between the

Figure 4.53 Square-wave oscillator with external components.

Figure 4.54 Schmitt inverter based oscillator.

Logic Gates and Related Devices 107

Figure 4.55 Crystal oscillator.

two threshold voltages. The frequency of oscillation, however, is sensitive to supply voltage variations.
It is given by the equation

f = 1/RC (4.15)

Figure 4.55 shows a crystal oscillator configured around a single inverter as the active element. Any odd
number of inverters can be used. A larger number of inverters limits the highest attainable frequency
of oscillation to a lower value.

4.14 Application-Relevant Information
Table 4.1 lists the commonly used type numbers along with the functional description and the logic
family. The pin connection diagrams and the functional tables of the more popular type numbers are
given in the companion website.

Table 4.1 Functional index of logic gates.

Type number Function Logic family

7400 Quad two-input NAND gate TTL
7401 Quad two-input NAND gate (open collector) TTL
7402 Quad two-input NOR gate TTL
7403 Quad two-input NAND gate (open collector) TTL
7404 Hex inverter TTL
7405 Hex inverter (open collector) TTL
7408 Quad two-input AND gate TTL
7409 Quad two-input AND gate (open collector) TTL
7410 Triple three-input NAND gate TTL

(Continued overleaf)

108 Digital Electronics

Table 4.1 (continued).

Type number Function Logic family

7411 Triple three-input AND gate TTL
7412 Triple three-input NAND gate (open collector) TTL
7413 Dual four-input Schmitt NAND gate TTL
7414 Hex Schmitt trigger inverter TTL
7418 Dual four-input Schmitt NAND gate TTL
7419 Hex Schmitt trigger inverter TTL
7420 Dual four-input NAND gate TTL
7421 Dual four-input AND gate TTL
7422 Dual four-input NAND gate (open collector) TTL
7427 Triple three-input NOR gate TTL
7430 Eight-input NAND gate TTL
7432 Quad two-input OR gate TTL
7451 Dual two-wide two-input three-input AND-OR-INVERT gate TTL
7454 Four-wide two-input AND-OR-INVERT gate TTL
7455 Two-wide four-input AND-OR-INVERT gate TTL
7486 Quad two-input EX-OR gate TTL
74125 Quad tristate noninverting buffer (LOW ENABLE) TTL
74126 Quad tristate noninverting buffer (HIGH ENABLE) TTL
74132 Quad two-input Schmitt trigger NAND gate TTL
74133 13-input NAND gate TTL
74136 Quad two-input EX-OR gate (open collector) TTL
74240 Octal tristate inverting bus/line driver TTL
74241 Octal tristate bus/line driver TTL
74242 Quad tristate inverting bus transceiver TTL
74243 Quad tristate noninverting bus transceiver TTL
74244 Octal tristate noninverting driver TTL
74245 Octal tristate noninverting bus transceiver TTL
74266 Quad two-input EXCLUSIVE-NOR gate (open collector) TTL
74365 Hex tristate noninverting buffer with common ENABLE TTL
74366 Hex tristate inverting buffer with common ENABLE TTL
74367 Hex tristate noninverting buffer, four-bit and two-bit TTL
74368 Hex tristate inverting buffer, four-bit and two-bit TTL
74386 Quad two-input EX-OR gate TTL
74465 Octal tristate noninverting buffer TTL

Gated ENABLE inverted
74540 Octal tristate inverting buffer/line driver TTL
74541 Octal tristate noninverting buffer/line driver TTL
74640 Octal tristate inverting bus transceiver TTL
74641 Octal tristate noninverting bus transceiver TTL

(open collector)
74645 Octal tristate noninverting bus transceiver TTL
4001B Quad two-input NOR gate CMOS
4002B Dual four-input NOR gate CMOS
4011B Quad two-input NAND gate CMOS
4012B Dual four-input NAND gate CMOS
4023B Triple three-input NAND gate CMOS
4025B Triple three-input NOR gate CMOS
4030B Quad two-input EX-OR gate CMOS
4049B Hex inverting buffer CMOS

Logic Gates and Related Devices 109

Table 4.1 (continued).

Type number Function Logic family

4050B Hex noninverting buffer CMOS
40097B Tristate hex noninverting buffer CMOS
40098B Tristate inverting buffer CMOS
4069UB Hex inverter CMOS
4070B Quad two-input EX-OR gate CMOS
4071B Quad two-input OR gate CMOS
4081B Quad two-input AND gate CMOS
4086B Four-wide two-input AND-OR-INVERT gate CMOS
4093B Quad two-input Schmitt NAND CMOS
10100 Quad two-input NOR gate with strobe ECL
10101 Quad two-input OR/NOR gate ECL
10102 Quad two-input NOR gate ECL
10103 Quad two-input OR gate ECL
10104 Quad two-input AND gate ECL
10113 Quad two-input EX-OR gate ECL
10114 Triple line receiver ECL
10115 Quad line Receiver ECL
10116 Triple Line receiver ECL
10117 Dual two-wide two- to three-input OR-AND/OR-AND-INVERT gate ECL
10118 Dual two-wide three-input OR-AND gate ECL
10123 Triple 4-3-3 input bus driver
10128 Dual bus driver ECL
10129 Quad bus driver ECL
10188 Hex buffer with ENABLE ECL
10192 Quad bus driver ECL
10194 Dual simultaneous transceiver ECL
10195 Hex buffer with invert/noninvert control ECL

Review Questions
1. How do you distinguish between positive and negative logic systems? Prove that an OR gate in a

positive logic system is an AND gate in a negative logic system.
2. Give brief statements that would help one remember the truth table of AND, NAND,

OR, NOR, EX-OR and EX-NOR logic gate functions, irrespective of the number of inputs
used.

3. Why are NAND and NOR gates called universal gates? Justify your answer with the help of
examples.

4. What are Schmitt gates? How does a Schmitt gate overcome the problem of occurrence of an erratic
output for slow varying input transitions?

5. What are logic gates with open collector or open drain outputs? What are the major advantages and
disadvantages of such devices?

6. Draw the circuit symbol and the associated truth table for the following:

(a) a tristate noninverting buffer with an active HIGH ENABLE input;
(b) a tristate inverting buffer with an active LOW ENABLE input;

110 Digital Electronics

(c) a three-input NAND with an open collector output;
(d) a four-input INHIBIT gate.

7. Define the fan-out specification of a logic gate. Which parameters would you need to know from
the data sheet of a logic gate to determine for yourself the fan-out in case it is not mentioned in the
data sheet? Explain the procedure for determining the fan-out specification from those parameters.
What are the consequences of exceeding the fan-out specification?

8. What is the main significance of IEEE/ANSI symbols when compared with the conventional ones?
Draw the ANSI symbols for four-input OR, two-input AND, two-input EX-OR and two-input
NAND gates.

Problems
1. What is the only input combination that:

(a) Will produce a logic ‘1’ at the output of an eight-input AND gate?
(b) Will produce a logic ‘0’ at the output of a four-input NAND gate?
(c) Will produce a logic ‘1’ at the output of an eight-input NOR gate?
(d) Will produce a logic ‘0’ at the output of a four-input OR gate?

(a) 11111111; (b) 1111; (c) 00000000; (d) 0000

2. Draw the truth table of the logic circuit shown in Fig. 4.56.

Y

A

B

C

D

Figure 4.56 Problem 2.

A

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

B

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

C

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Y

1

0

1

0

1

0

1

1

1

0

1

1

1

0

1

1

Figure 4.57 Solution of problem 2.

Logic Gates and Related Devices 111

3. Redraw the logic circuit of Fig. 4.56 using IEEE/ANSI symbols.

>1

A

B

C

D

& 1

& Y

Figure 4.58 Solution to problem 3.

4. Refer to Fig. 4.59(a). The ENABLE waveforms applied at A and B inputs are respectively shown
in Figs 4.59(b) and (c). What is the output state of inverter 3 and inverter 4 at (i) t = 3 ms and (ii)
t = 5 ms?

(i) The output of inverter 3 = high Z, while the output of inverter 4 = logic ‘1’
(ii) The output of inverter 3 = logic ‘0’, while the output of inverter 4 = high Z

Figure 4.59 Problem 4.

112 Digital Electronics

Figure 4.59 (Continued)

Y'1'

Y

(a)

(b)

(c)

(d)

'0'

A

Y

A

A

A

Y

Figure 4.60 Solution to problem 5.

5. Draw logic implementation of an inverter using (i) two-input NAND, (ii) two-input NOR,
(iii) two-input EX-OR and (iv) two-input EX-NOR.

(i) Fig. 4.60(a); (ii) Fig. 4.60(b); (iii) Fig. 4.60(c); (iv) Fig. 4.60(d)

Logic Gates and Related Devices 113

A

B

C
D
E
F
G
H

AB
ABC

ABCD
ABCDE

ABCDEF
ABCDEFGH

Y

ABCDEFG

Y=ABCDEFGH

(a)

A

B
AB

C

D

CD

ABCD

E

F
EF

G

H

GH
EFGH

ABCDEFGH
Y

Y=ABCDEFGH

(b)

Figure 4.61 Solution to problem 6.

A

B

C

D

E

F

G

H

Y

'1'

Y = A B C D E F G H+ + + + + + +

Figure 4.62 Solution to problem 7.

114 Digital Electronics

6. It is proposed to construct an eight-input NAND gate using only two-input AND gates and two-input
NAND gates. Draw the logic arrangement that uses the minimum number of logic gates.

The two possible logic circuits are shown in Figs 4.61(a) and (b)

7. Draw the logic diagram to implement an eight-input EX-NOR function using the minimum number
of two-input logic gates.

Further Reading
1. Cook, N. P. (2003) Practical Digital Electronics, Prentice-Hall, NJ, USA.
2. Fairchild Semiconductor Corporation (October 1974) CMOS Oscillators, Application Note 118, South Portland,

ME, USA.
3. Holdsworth, B. and Woods, C. (2002) Digital Logic Design, Newnes, Oxford, UK.
4. Langholz, G., Mott, J. L. and Kandel, A. (1998) Foundations of Digital Logic Design, World Scientific Publ.

Co. Inc., Singapore.
5. Chen, W.-K. (2003) Logic Design, CRC Press, FL, USA.

5
Logic Families

Digital integrated circuits are produced using several different circuit configurations and production
technologies. Each such approach is called a specific logic family. In this chapter, we will discuss
different logic families used to hardware-implement different logic functions in the form of digital
integrated circuits. The chapter begins with an introduction to logic families and the important
parameters that can be used to characterize different families. This is followed by a detailed description
of common logic families in terms of salient features, internal circuitry and interface aspects. Logic
families discussed in the chapter include transistor transistor logic (TTL), metal oxide semiconductor
(MOS) logic, emitter coupled logic (ECL), bipolar-CMOS (Bi-CMOS) logic and integrated injection
logic (I2L).

5.1 Logic Families – Significance and Types
There are a variety of circuit configurations or more appropriately various approaches used to produce
different types of digital integrated circuit. Each such fundamental approach is called a logic family.
The idea is that different logic functions, when fabricated in the form of an IC with the same approach,
or in other words belonging to the same logic family, will have identical electrical characteristics.
These characteristics include supply voltage range, speed of response, power dissipation, input and
output logic levels, current sourcing and sinking capability, fan-out, noise margin, etc. In other
words, the set of digital ICs belonging to the same logic family are electrically compatible with each
other.

5.1.1 Significance

A digital system in general comprises digital ICs performing different logic functions, and choosing
these ICs from the same logic family guarantees that different ICs are compatible with respect to each

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

116 Digital Electronics

other and that the system as a whole performs the intended logic function. In the case where the output
of an IC belonging to a certain family feeds the inputs of another IC belonging to a different family,
we must use established interface techniques to ensure compatibility. Understanding the features and
capabilities of different logic families is very important for a logic designer who is out to make an
optimum choice for his new digital design from the available logic family alternatives. A not so well
thought out choice can easily underkill or overkill the design with either inadequate or excessive
capabilities.

5.1.2 Types of Logic Family

The entire range of digital ICs is fabricated using either bipolar devices or MOS devices or a
combination of the two. Different logic families falling in the first category are called bipolar families,
and these include diode logic (DL), resistor transistor logic (RTL), diode transistor logic (DTL),
transistor transistor logic (TTL), emitter coupled logic (ECL), also known as current mode logic
(CML), and integrated injection logic (I2L). The logic families that use MOS devices as their basis are
known as MOS families, and the prominent members belonging to this category are the PMOS family
(using P-channel MOSFETs), the NMOS family (using N-channel MOSFETs) and the CMOS family
(using both N- and P-channel devices). The Bi-MOS logic family uses both bipolar and MOS devices.

Of all the logic families listed above, the first three, that is, diode logic (DL), resistor transistor
logic (RTL) and diode transistor logic (DTL), are of historical importance only. Diode logic used
diodes and resistors and in fact was never implemented in integrated circuits. The RTL family used
resistors and bipolar transistors, while the DTL family used resistors, diodes and bipolar transistors.
Both RTL and DTL suffered from large propagation delay owing to the need for the transistor base
charge to leak out if the transistor were to switch from conducting to nonconducting state. Figure 5.1
shows the simplified schematics of a two-input AND gate using DL [Fig. 5.1(a)], a two-input NOR
gate using RTL [Fig. 5.1(b)] and a two-input NAND gate using DTL [Fig. 5.1(c)]. The DL, RTL and
DTL families, however, were rendered obsolete very shortly after their introduction in the early 1960s
owing to the arrival on the scene of transistor transistor logic (TTL).

Logic families that are still in widespread use include TTL, CMOS, ECL, NMOS and Bi-CMOS.
The PMOS and I2L logic families, which were mainly intended for use in custom large-scale integrated
(LSI) circuit devices, have also been rendered more or less obsolete, with the NMOS logic family
replacing them for LSI and VLSI applications.

5.1.2.1 TTL Subfamilies

The TTL family has a number of subfamilies including standard TTL, low-power TTL, high-power
TTL, low-power Schottky TTL, Schottky TTL, advanced low-power Schottky TTL, advanced Schottky
TTL and fast TTL. The ICs belonging to the TTL family are designated as 74 or 54 (for standard TTL),
74L or 54L (for low-power TTL), 74H or 54H (for high-power TTL), 74LS or 54LS (for low-power
Schottky TTL), 74S or 54S (for Schottky TTL), 74ALS or 54ALS (for advanced low-power Schottky
TTL), 74AS or 54AS (for advanced Schottky TTL) and 74F or 54F (for fast TTL). An alphabetic code
preceding this indicates the name of the manufacturer (DM for National Semiconductors, SN for Texas
Instruments and so on). A two-, three- or four-digit numerical code tells the logic function performed
by the IC. It may be mentioned that 74-series devices and 54-series devices are identical except for
their operational temperature range. The 54-series devices are MIL-qualified (operational temperature
range: −55 °C to +125 °C) versions of the corresponding 74-series ICs (operational temperature range:
0 °C to 70 °C). For example, 7400 and 5400 are both quad two-input NAND gates.

Logic Families 117

+V

+V

A

B

Y = A.B

B

A

Y = A+B

+V

A

B

Y = A.B

(a)

(b)

(c)

Figure 5.1 (a) Diode logic (b) resistor transistor logic and (c) diode transistor logic.

5.1.2.2 CMOS Subfamilies

The popular CMOS subfamilies include the 4000A, 4000B, 4000UB, 54/74C, 54/74HC, 54/74HCT,
54/74AC and 54/74ACT families. The 4000A CMOS family has been replaced by its high-voltage
versions in the 4000B and 4000UB CMOS families, with the former having buffered and the latter
having unbuffered outputs. 54/74C, 54/74HC, 54/74HCT, 54/74AC and 54/74ACT are CMOS logic
families with pin-compatible 54/74 TTL series logic functions.

118 Digital Electronics

5.1.2.3 ECL Subfamilies

The first monolithic emitter coupled logic family was introduced by ON Semiconductor, formerly a
division of Motorola, with the MECL-I series of devices in 1962, with the MECL-II series following
it up in 1966. Both these logic families have become obsolete. Currently, popular subfamilies of ECL
logic include MECL-III (also called the MC 1600 series), the MECL-10K series, the MECL-10H series
and the MECL-10E series (ECLinPS and ECLinPSLite). The MECL-10K series further divided into
the 10 100-series and 10 200-series devices.

5.2 Characteristic Parameters
In this section, we will briefly describe the parameters used to characterize different logic families.
Some of these characteristic parameters, as we will see in the paragraphs to follow, are also used to
compare different logic families.

• HIGH-level input current, IIH. This is the current flowing into (taken as positive) or out of (taken
as negative) an input when a HIGH-level input voltage equal to the minimum HIGH-level output
voltage specified for the family is applied. In the case of bipolar logic families such as TTL, the
circuit design is such that this current flows into the input pin and is therefore specified as positive.
In the case of CMOS logic families, it could be either positive or negative, and only an absolute
value is specified in this case.

• LOW-level input current, IIL. The LOW-level input current is the maximum current flowing into
(taken as positive) or out of (taken as negative) the input of a logic function when the voltage
applied at the input equals the maximum LOW-level output voltage specified for the family. In the
case of bipolar logic families such as TTL, the circuit design is such that this current flows out of
the input pin and is therefore specified as negative. In the case of CMOS logic families, it could be
either positive or negative. In this case, only an absolute value is specified.

HIGH-level and LOW-level input current or loading are also sometimes defined in terms of unit load
(UL). For devices of the TTL family, 1 UL (HIGH) = 40 �A and 1 UL (LOW) = 1.6 mA.

• HIGH-level output current, IOH. This is the maximum current flowing out of an output when
the input conditions are such that the output is in the logic HIGH state. It is normally shown as
a negative number. It tells about the current sourcing capability of the output. The magnitude of
IOH determines the number of inputs the logic function can drive when its output is in the logic
HIGH state. For example, for the standard TTL family, the minimum guaranteed IOH is −400 �A,
which can drive 10 standard TTL inputs with each requiring 40 �A in the HIGH state, as shown in
Fig. 5.2(a).

• LOW-level output current, IOL. This is the maximum current flowing into the output pin of a logic
function when the input conditions are such that the output is in the logic LOW state. It tells about
the current sinking capability of the output. The magnitude of IOL determines the number of inputs
the logic function can drive when its output is in the logic LOW state. For example, for the standard
TTL family, the minimum guaranteed IOL is 16 mA, which can drive 10 standard TTL inputs with
each requiring 1.6 mA in the LOW state, as shown in Fig. 5.2(b).

• HIGH-level off-state (high-impedance state) output current, IOZH. This is the current flowing
into an output of a tristate logic function with the ENABLE input chosen so as to establish a
high-impedance state and a logic HIGH voltage level applied at the output. The input conditions are
chosen so as to produce logic LOW if the device is enabled.

Logic Families 119

Figure 5.2 Input and output current specifications.

• LOW-level off-state (high-impedance state) output current, IOZL. This is the current flowing
into an output of a tristate logic function with the ENABLE input chosen so as to establish a
high-impedance state and a logic LOW voltage level applied at the output. The input conditions are
chosen so as to produce logic HIGH if the device is enabled.

• HIGH-level input voltage, VIH. This is the minimum voltage level that needs to be applied at the
input to be recognized as a legal HIGH level for the specified family. For the standard TTL family,
a 2 V input voltage is a legal HIGH logic state.

120 Digital Electronics

• LOW-level input voltage, VIL. This is the maximum voltage level applied at the input that is
recognized as a legal LOW level for the specified family. For the standard TTL family, an input
voltage of 0.8 V is a legal LOW logic state.

• HIGH-level output voltage, VOH. This is the minimum voltage on the output pin of a logic function
when the input conditions establish logic HIGH at the output for the specified family. In the case of
the standard TTL family of devices, the HIGH level output voltage can be as low as 2.4 V and still
be treated as a legal HIGH logic state. It may be mentioned here that, for a given logic family, the
VOH specification is always greater than the VIH specification to ensure output-to-input compatibility
when the output of one device feeds the input of another.

• LOW-level output voltage, VOL. This is the maximum voltage on the output pin of a logic function
when the input conditions establish logic LOW at the output for the specified family. In the case of
the standard TTL family of devices, the LOW-level output voltage can be as high as 0.4 V and still
be treated as a legal LOW logic state. It may be mentioned here that, for a given logic family, the
VOL specification is always smaller than the VIL specification to ensure output-to-input compatibility
when the output of one device feeds the input of another.

The different input/output current and voltage parameters are shown in Fig. 5.3, with HIGH-level current
and voltage parameters in Fig. 5.3(a) and LOW-level current and voltage parameters in Fig. 5.3(b).
It may be mentioned here that the direction of the LOW-level input and output currents shown in
Fig. 5.3(b) is applicable to logic families with current-sinking action such as TTL.

Figure 5.3 (a) HIGH-level current and voltage parameters and (b) LOW-level current and voltage parameters.

Logic Families 121

• Supply current, ICC. The supply current when the output is HIGH, LOW and in the high-impedance
state is respectively designated as ICCH, ICCL and ICCZ.

• Rise time, tr. This is the time that elapses between 10 and 90 % of the final signal level when the
signal is making a transition from logic LOW to logic HIGH.

• Fall time, tf . This is the time that elapses between 90 and 10 % of the signal level when it is making
HIGH to LOW transition.

• Propagation delay tp. The propagation delay is the time delay between the occurrence of change
in the logical level at the input and before it is reflected at the output. It is the time delay between
the specified voltage points on the input and output waveforms. Propagation delays are separately
defined for LOW-to-HIGH and HIGH-to-LOW transitions at the output. In addition, we also define
enable and disable time delays that occur during transition between the high-impedance state and
defined logic LOW or HIGH states.

• Propagation delay tpLH. This is the time delay between specified voltage points on the input and
output waveforms with the output changing from LOW to HIGH.

• Propagation delay tpHL. This is the time delay between specified voltage points on the input and
output waveforms with the output changing from HIGH to LOW. Figure 5.4 shows the two types
of propagation delay parameter.

• Disable time from the HIGH state, tpHZ. Defined for a tristate device, this is the time delay between
specified voltage points on the input and output waveforms with the tristate output changing from
the logic HIGH level to the high-impedance state.

• Disable time from the LOW state, tpLZ. Defined for a tristate device, this is the time delay between
specified voltage points on the input and output waveforms with the tristate output changing from
the logic LOW level to the high-impedance state.

• Enable time from the HIGH state, tpZH. Defined for a tristate device, this is the time delay between
specified voltage points on the input and output waveforms with the tristate output changing from
the high-impedance state to the logic HIGH level.

Figure 5.4 Propagation delay parameters.

122 Digital Electronics

• Enable time from the LOW state, tpZL. Defined for a tristate device, this is the time delay between
specified voltage points on the input and output waveforms with the tristate output changing from
the high-impedance state to the logic LOW level.

• Maximum clock frequency, fmax. This is the maximum frequency at which the clock input of a
flip-flop can be driven through its required sequence while maintaining stable transitions of logic
level at the output in accordance with the input conditions and the product specification. It is also
referred to as the maximum toggle rate for a flip-flop or counter device.

• Power dissipation. The power dissipation parameter for a logic family is specified in terms of
power consumption per gate and is the product of supply voltage VCC and supply current ICC. The
supply current is taken as the average of the HIGH-level supply current ICCH and the LOW-level
supply current ICCL.

• Speed–power product. The speed of a logic circuit can be increased, that is, the propagation delay
can be reduced, at the expense of power dissipation. We will recall that, when a bipolar transistor
switches between cut-off and saturation, it dissipates the least power but has a large associated
switching time delay. On the other hand, when the transistor is operated in the active region, power
dissipation goes up while the switching time decreases drastically. It is always desirable to have in
a logic family low values for both propagation delay and power dissipation parameters. A useful
figure-of-merit used to evaluate different logic families is the speed–power product, expressed in
picojoules, which is the product of the propagation delay (measured in nanoseconds) and the power
dissipation per gate (measured in milliwatts).

• Fan-out. The fan-out is the number of inputs of a logic function that can be driven from a single
output without causing any false output. It is a characteristic of the logic family to which the device
belongs. It can be computed from IOH/IIH in the logic HIGH state and from IOL/IIL in the logic LOW
state. If, in a certain case, the two values IOH/IIH and IOL/IIL are different, the fan-out is taken as the
smaller of the two. This description of the fan-out is true for bipolar logic families like TTL and
ECL. When determining the fan-out of CMOS logic devices, we should also take into consideration
how much input load capacitance can be driven from the output without exceeding the acceptable
value of propagation delay.

• Noise margin. This is a quantitative measure of noise immunity offered by the logic family. When
the output of a logic device feeds the input of another device of the same family, a legal HIGH
logic state at the output of the feeding device should be treated as a legal HIGH logic state by the
input of the device being fed. Similarly, a legal LOW logic state of the feeding device should be
treated as a legal LOW logic state by the device being fed. We have seen in earlier paragraphs while
defining important characteristic parameters that legal HIGH and LOW voltage levels for a given
logic family are different for outputs and inputs. Figure 5.5 shows the generalized case of legal
HIGH and LOW voltage levels for output [Fig. 5.5(a)] and input [Fig. 5.5(b)]. As we can see from
the two diagrams, there is a disallowed range of output voltage levels from VOL(max.) to VOH(min.)
and an indeterminate range of input voltage levels from VIL(max.) to VIH(min.). Since VIL(max.) is
greater than VOL(max.), the LOW output state can therefore tolerate a positive voltage spike equal
to VIL(max.) − VOL(max.) and still be a legal LOW input. Similarly, VOH(min.) is greater than VIH

(min.), and the HIGH output state can tolerate a negative voltage spike equal to VOH(min.) − VIH

(min.) and still be a legal HIGH input. Here, VIL(max.) − VOL(max.) and VOH(min.) − VIH (min.)
are respectively known as the LOW-level and HIGH-level noise margin.

Let us illustrate it further with the help of data for the standard TTL family. The minimum legal
HIGH output voltage level in the case of the standard TTL is 2.4 V. Also, the minimum legal HIGH
input voltage level for this family is 2 V. This implies that, when the output of one device feeds the
input of another, there is an available margin of 0.4 V. That is, any negative voltage spikes of amplitude

Logic Families 123

Figure 5.5 Noise margin.

less than or equal to 0.4 V on the signal line do not cause any spurious transitions. Similarly, when
the output is in the logic LOW state, the maximum legal LOW output voltage level in the case of the
standard TTL is 0.4 V. Also, the maximum legal LOW input voltage level for this family is 0.8 V.
This implies that, when the output of one device feeds the input of another, there is again an available
margin of 0.4 V. That is, any positive voltage spikes of amplitude less than or equal to 0.4 V on the
signal line do not cause any spurious transitions. This leads to the standard TTL family offering a noise
margin of 0.4 V. To generalize, the noise margin offered by a logic family, as outlined earlier, can be
computed from the HIGH-state noise margin, VNH = VOH(min.) − VIH(min.), and the LOW-state noise
margin, VNL = VIL(max.) − VOL(max.). If the two values are different, the noise margin is taken as
the lower of the two.

Example 5.1

The data sheet of a quad two-input NAND gate specifies the following parameters: IOH (max.) = 0.4
mA, VOH (min.) = 2.7 V, VIH (min.) = 2V, VIL(max.) = 0.8 V, VOL(max.) = 0.4 V, IOL(max.) = 8 mA,
IIL(max.) = 0.4 mA, IIH (max.) = 20 �A, ICCH (max.) = 1.6 mA, ICCL(max.) = 4.4 mA, tpLH = tpHL = 15 ns
and a supply voltage range of 5 V. Determine (a) the average power dissipation of a single NAND
gate, (b) the maximum average propagation delay of a single gate, (c) the HIGH-state noise margin
and (d) the LOW-state noise margin

Solution
(a) The average supply current = (ICCH + ICCL�/2 = (1.6 + 4.4)/2 = 3 mA.

The supply voltage VCC = 5 V.
Therefore, the power dissipation for all four gates in the IC = 5 × 3 = 15 mW.
The average power dissipation per gate = 15/4 = 3.75 mW.

(b) The propagation delay = 15 ns.
(c) The HIGH-state noise margin = VOH(min.) − VIH(min.) = 2.7 − 2 = 0.7 V.
(d) The LOW-state noise margin = VIL(max.) − VOL(max.) = 0.8 − 0.4 = 0.4 V.

124 Digital Electronics

Example 5.2

Refer to example 5.1. How many NAND gate inputs can be driven from the output of a NAND gate of
this type?

Solution
• This figure is given by the worst-case fan-out specification of the device.
• Now, the HIGH-state fan-out = IOH/IIH = 400/20 = 20.
• The LOW-state fan-out = IOL/IIL = 8/0.4 = 20.
• Therefore, the number of inputs that can be driven from a single output = 20.

Example 5.3

Determine the fan-out of IC 74LS04, given the following data: input loading factor (HIGH
state) = 0.5 UL, input loading factor (LOW state) = 0.25 UL, output loading factor (HIGH state) = 10
UL, output loading factor (LOW state) = 5 UL, where UL is the unit load.

Solution
• The HIGH-state fan-out can be computed from: fan-out = output loading factor (HIGH)/input loading

factor (HIGH) = 10 UL/0.5 UL = 20.
• The LOW-state fan-out can be computed from: fan-out = output loading factor (LOW)/input loading

factor (LOW) = 5 UL/0.25 UL = 20.
• Since the fan-out in the two cases turns out to be the same, it follows that the fan-out = 20.

Example 5.4

A certain TTL gate has IIH = 20 �A, IIL = 0.1 mA, IOH = 0.4 mA and IOL = 4 mA. Determine the input
and output loading in the HIGH and LOW states in terms of UL.

Solution
• 1 UL (LOW state) = 1.6 mA and 1 UL (HIGH state) = 40 �A.
• The input loading factor (HIGH state) = 20 �A = 20/40 = 0.5 UL.
• The input loading factor (LOW state) = 0.1 mA = 0.1/1.6 = 1/16 UL
• The output loading factor (HIGH state) = 0.4 mA = 0.4/0.04 = 10 UL.
• The output loading factor (LOW state) = 4 mA = 4/1.6 = 2.5 UL.

5.3 Transistor Transistor Logic (TTL)
TTL as outlined above stands for transistor transistor logic. It is a logic family implemented with
bipolar process technology that combines or integrates NPN transistors, PN junction diodes and diffused
resistors in a single monolithic structure to get the desired logic function. The NAND gate is the
basic building block of this logic family. Different subfamilies in this logic family, as outlined earlier,
include standard TTL, low-power TTL, high-power TTL, low-power Schottky TTL, Schottky TTL,
advanced low-power Schottky TTL, advanced Schottky TTL and fast TTL. In the following paragraphs,
we will briefly describe each of these subfamilies in terms of internal structure and characteristic
parameters.

Logic Families 125

R3

130

Q3

D1

Q4R4

1K

R2

1.6K

R1

4K

VCC

GND

YQ2

Q1

Input A

Input B

D2 D3

Figure 5.6 Standard TTL NAND gate.

5.3.1 Standard TTL

Figure 5.6 shows the internal schematic of a standard TTL NAND gate. It is one of the four circuits
of 5400/7400, which is a quad two-input NAND gate. The circuit operates as follows. Transistor Q1 is
a two-emitter NPN transistor, which is equivalent to two NPN transistors with their base and emitter
terminals tied together. The two emitters are the two inputs of the NAND gate. Diodes D2 and D3 are
used to limit negative input voltages. We will now examine the behaviour of the circuit for various
possible logic states at the two inputs.

5.3.1.1 Circuit Operation

When both the inputs are in the logic HIGH state as specified by the TTL family (VIH = 2 V minimum),
the current flows through the base-collector PN junction diode of transistor Q1 into the base of transistor
Q2. Transistor Q2 is turned ON to saturation, with the result that transistor Q3 is switched OFF and
transistor Q4 is switched ON. This produces a logic LOW at the output, with VOL being 0.4 V maximum
when it is sinking a current of 16 mA from external loads represented by inputs of logic functions
being driven by the output. The current-sinking action is shown in Fig. 5.7(a). Transistor Q4 is also
referred to as the current-sinking or pull-down transistor, for obvious reasons. Diode D1 is used to
prevent transistor Q3 from conducting even a small amount of current when the output is LOW. When
the output is LOW, Q4 is in saturation and Q3 will conduct slightly in the absence of D1. Also, the
input current IIH in the HIGH state is nothing but the reverse-biased junction diode leakage current
and is typically 40 �A.

When either of the two inputs or both inputs are in the logic LOW state, the base-emitter region of
Q1 conducts current, driving Q2 to cut-off in the process. When Q2 is in the cut-off state, Q3 is driven
to conduction and Q4 to cut-off. This produces a logic HIGH output with VOH(min.) = 2.4 V guaranteed
for minimum supply voltage VCC and a source current of 400 �A. The current-sourcing action is shown
in Fig. 5.7(b). Transistor Q3 is also referred to as the current-sourcing or pull-up transistor. Also, the
LOW-level input current IIL, given by (VCC −VBE1�/R1, is 1.6 mA (max.) for maximum VCC.

126 Digital Electronics

Q3

R3

R1

Q2

Q1D1

IOL

Q4

+VCC+VCC

IIL

Driving Gate Driven Gate

(a)

Q3

R2 R1

Q2

Q1D1

Q4

+VCC+VCC

Driving Gate Driven Gate

IIH

R3

IOH

(b)

Figure 5.7 (a) Current sinking action and (b) current sourcing action.

5.3.1.2 Totem-Pole Output Stage

Transistors Q3 and Q4 constitute what is known as a totem-pole output arrangement. In such an
arrangement, either Q3 or Q4 conducts at a time depending upon the logic status of the inputs. The
totem-pole arrangement at the output has certain distinct advantages. The major advantage of using

Logic Families 127

a totem-pole connection is that it offers low-output impedance in both the HIGH and LOW output
states. In the HIGH state, Q3 acts as an emitter follower and has an output impedance of about 70 �.
In the LOW state, Q4 is saturated and the output impedance is approximately 10 �. Because of the
low output impedance, any stray capacitance at the output can be charged or discharged very rapidly
through this low impedance, thus allowing quick transitions at the output from one state to the other.
Another advantage is that, when the output is in the logic LOW state, transistor Q4 would need to
conduct a fairly large current if its collector were tied to VCC through R3 only. A nonconducting
Q3 overcomes this problem. A disadvantage of the totem-pole output configuration results from the
switch-off action of Q4 being slower than the switch-on action of Q3. On account of this, there will be
a small fraction of time, of the order of a few nanoseconds, when both the transistors are conducting,
thus drawing heavy current from the supply.

5.3.1.3 Characteristic Features

To sum up, the characteristic parameters and features of the standard TTL family of devices
include the following: VIL = 0.8 V; VIH = 2 V; IIH = 40 �A; IIL = 1.6 mA; VOH = 2.4 V; VOL = 0.4 V;
IOH = 400 �A; IOL = 16 mA; VCC = 4.75–5.25 V (74-series) and 4.5–5.5 V (54-series); propagation
delay (for a load resistance of 400 �, a load capacitance of 15 pF and an ambient temperature
of 25 °C) = 22 ns (max.) for LOW-to-HIGH transition at the output and 15 ns (max.) for HIGH-
to-LOW output transition; worst-case noise margin = 0.4 V; fan-out = 10; ICCH (for all four
gates) = 8 mA; ICCL (for all four gates) = 22 mA; operating temperature range = 0–70 °C (74-
series) and −55 to +125 °C (54-series); speed–power product = 100 pJ; maximum flip-flop toggle
frequency = 35 MHz.

5.3.2 Other Logic Gates in Standard TTL

As outlined earlier, the NAND gate is the fundamental building block of the TTL family. In the
following paragraphs we will look at the internal schematics of the other logic gates and find for
ourselves their similarity to the schematic of the NAND gate discussed in detail in earlier paragraphs.

5.3.2.1 NOT Gate (or Inverter)

Figure 5.8 shows the internal schematic of a NOT gate (inverter) in the standard TTL family. The
schematic shown is that of one of the six inverters in a hex inverter (type 7404/5404). The internal
schematic is just the same as that of the NAND gate except that the input transistor is a normal single
emitter NPN transistor instead of a multi-emitter one. The circuit is self-explanatory.

5.3.2.2 NOR Gate

Figure 5.9 shows the internal schematic of a NOR gate in the standard TTL family. The schematic
shown is that of one of the four NOR gates in a quad two-input NOR gate (type 7402/5402). On the
input side there are two separate transistors instead of the multi-emitter transistor of the NAND gate.
The inputs are fed to the emitters of the two transistors, the collectors of which again feed the bases of
the two transistors with their collector and emitter terminals tied together. The resistance values used
are the same as those used in the case of the NAND gate. The output stage is also the same totem-pole
output stage. The circuit is self-explanatory. The only input condition for which transistors Q3 and Q4

128 Digital Electronics

4K 1301.6K

VCC

GND

Output Y
Q3

Q2

Q1

1K
Q4

Input
A

D1

D2

Figure 5.8 Inverter in the standard TTL.

B

A
Input

4K 1.6K 130

VCC

Output
Y

1K
Q2

Q4

Q6

Q5

Q1

Q3

GND

4K

Input

D1

D2

D3

Figure 5.9 NOR gate in the standard TTL.

remain in cut-off, thus driving Q6 to cut-off and Q5 to conduction, is the one when both the inputs
are in the logic LOW state. The output in such a case is logic HIGH. For all other input conditions,
either Q3 or Q4 will conduct, driving Q6 to saturation and Q5 to cut-off, producing a logic LOW at
the output.

5.3.2.3 AND Gate

Figure 5.10 shows the internal schematic of an AND gate in the standard TTL family. The schematic
shown is that of one of the four AND gates in a quad two-input AND gate (type 7408/5408). In order
to explain how this schematic arrangement behaves as an AND gate, we will begin by investigating
the input condition that would lead to a HIGH output. A HIGH output implies Q6 to be in cut-off and
Q5 to be in conduction. This can happen only when Q4 is in cut-off. Transistor Q4 can be in the cut-off

Logic Families 129

VCC

Q6

Q5
Q4

Q3

Q2

Q1

Input A

4K 2K 1.6K 130

Output
Y

GND

800K 1K

Input B
D1

D2

D3

D4

Figure 5.10 AND gate in standard TTL.

state only when both Q2 and Q3 are in conduction. This is possible only when both inputs are in the
logic HIGH state. Let us now see what happens when either of the two inputs is driven to the LOW
state. This drives Q2 and Q3 to the cut-off state, which forces Q4 and subsequently Q6 to saturation
and Q5 to cut-off.

5.3.2.4 OR Gate

Figure 5.11 shows the internal schematic of an OR gate in the standard TTL family. The schematic
shown is that of one of the four OR gates in a quad two-input OR gate (type 7432/5432). We will
begin by investigating the input condition that would lead to a LOW output. A LOW output demands
a saturated Q8 and a cut-off Q7. This in turn requires Q6 to be in saturation and Q5, Q4 and Q3 to

Q8

Q7

Q3

Q4

Q2

Q1
A

B

Input

4K 4K 2.5K
1.6K 130

VCC

GND

Output
Y

1KQ51K

Q6
Input

D1
D2

D3

D4

Figure 5.11 OR gate in the standard TTL.

130 Digital Electronics

be in cut-off. This is possible only when both Q1 and Q2 are in saturation. That is, both inputs are in
the logic LOW state. This verifies one of the entries of the truth table of the OR gate. Let us now see
what happens when either of the two inputs is driven to the HIGH state. This drives either of the two
transistors Q3 and Q4 to saturation, which forces Q5 to saturation and Q6 to cut-off. This drives Q7 to
conduction and Q8 to cut-off, producing a logic HIGH output.

5.3.2.5 EXCLUSIVE-OR Gate

Figure 5.12 shows the internal schematic of an EX-OR gate in the standard TTL family. The schematic
shown is that of one of the four EX-OR gates in a quad two-input EX-OR gate (type 7486/5486).
We will note the similarities between this circuit and that of an OR gate. The only new element is
the interconnected pair of transistors Q7 and Q8. We will see that, when both the inputs are either
HIGH or LOW, both Q7 and Q8 remain in cut-off. In the case of inputs being in the logic HIGH
state, the base and emitter terminals of both these transistors remain near the ground potential. In
the case of inputs being in the LOW state, the base and emitter terminals of both these transistors
remain near VCC. The result is conducting Q9 and Q11 and nonconducting Q10, which leads to a LOW
output. When either of the inputs is HIGH, either Q7 or Q8 conducts. Transistor Q7 conducts when
input B is HIGH, and transistor Q8 conducts when input A is HIGH. Conducting Q7 or Q8 turns off
Q9 and Q11 and turns on Q10, producing a HIGH output. This explains how this circuit behaves as
an EX-OR gate.

Q10

R10

D5

Q11

+VCC

Q9

R8R7

Q7

Q8

Q6R6D3

Q4

Q5

D4

4K 1.9K

1.2K

Q1

D1

A

B

R4 4K R5 1.9K

Q3

Q2

R3

R2

1.6K 1302K

1K
R9

1.2K

D2

Input

Input

R1

Output
Y

Figure 5.12 EX-OR gate in the standard TTL.

Logic Families 131

5.3.2.6 AND-OR-INVERT Gate

Figure 5.13 shows the internal schematic of a two-wide, two-input AND-OR-INVERT or AND-NOR
gate. The schematic shown is that of one of the two gates in a dual two-wide, two-input AND-OR-
INVERT gate (type 7450/5450). The two multi-emitter input transistors Q1 and Q2 provide ANDing
of their respective inputs. Drive splitters comprising Q3, Q4, R3 and R4 provide the OR function. The
output stage provides inversion. The number of emitters in each of the input transistors determines the
number of literals in each of the minterms in the output sum-of-products Boolean expression. How
wide the gate is going to be is decided by the number of input transistors, which also equals the number
of drive splitter transistors.

5.3.2.7 Open Collector Gate

An open collector gate in TTL is one that is without a totem-pole output stage. The output stage in
this case does not have the active pull-up transistor. An external pull-up resistor needs to be connected
from the open collector terminal of the pull-down transistor to the VCC terminal. The pull-up resistor
is typically 10 k�. Figure 5.14 shows the internal schematic of a NAND gate with an open collector
output. The schematic shown is that of one of the four gates of a quad two-input NAND (type
74/5401). The advantage of open collector outputs is that the outputs of different gates can be wired
together, resulting in ANDing of their outputs. WIRE-AND operation was discussed in Chapter 4 on
logic gates.

It may be mentioned here that the outputs of totem-pole TTL devices cannot be tied together.
Although a common tied output may end up producing an ANDing of individual outputs, such a
connection is impractical. This is illustrated in Fig. 5.15, where outputs of two totem-pole output TTL

Input A

1X

(Not on Gate 2)
1X

Q2

D4

Q3

R3
1301.6K4K

R1

Q1

D2

Q5
D5

Q6

R4
1K

GND

4K
R2

Q4

VCC

D1

D3
Output Y

Input B

Input C
Input D

R5

Figure 5.13 Two-input, two-wide AND-OR-INVERT gate.

132 Digital Electronics

Input A
Q2

4K

Q3

Output
Y

1.6K

Q1

VCC

1K

GND

Input B

D1

D2

Figure 5.14 NAND gate with an open collector output.

Q31

Q41

+VCC

Gate–1

Q32

130

Q42

+VCC

Gate–2

130

Figure 5.15 Totem-pole output gates tied at the output.

gates have been tied together. Let us assume that the output of one of the gates, say gate-2, is LOW,
and the output of the other is HIGH. The result is that a relatively heavier current flows through Q31

and Q42. This current, which is of the order of 50–60 mA, exceeds the IOL(max.) rating of Q42. This
may eventually lead to both transistors getting damaged. Even if they survive, VOL(max.) of Q42 is
no longer guaranteed. In view of this, although totem-pole output TTL gates are not tied together, an
accidental shorting of outputs is not ruled out. In such a case, both devices are likely to get damaged.
In the case of open collector devices, deliberate or nondeliberate, shorting of outputs produces ANDing
of outputs with no risk of either damage or compromised performance specifications.

5.3.2.8 Tristate Gate

Tristate gates were discussed in Chapter 4. A tristate gate has three output states, namely the logic
LOW state, the logic HIGH state and the high-impedance state. An external enable input decides

Logic Families 133

Input

ENABLE

Q1

Q2

D1

R3
Q4

Q3
D2

Y

+VCC

130
R4R2

1.6K4K
R1

1K

Figure 5.16 Tristate inverter in the TTL.

whether the logic gate works according to its truth table or is in the high-impedance state. Figure 5.16
shows the typical internal schematic of a tristate inverter with an active HIGH enable input. The circuit
functions as follows. When the enable input is HIGH, it reverse-biases diode D1 and also applies a
logic HIGH on one of the emitters of the input transistor Q1. The circuit behaves like an inverter.
When the enable input is LOW, diode D1 becomes forward biased. A LOW enable input forces Q2 and
Q4 to cut-off. Also, a forward-biased D1 forces Q3 to cut-off. With both output transistors in cut-off,
the output essentially is an open circuit and thus presents high output impedance.

5.3.3 Low-Power TTL

The low-power TTL is a low-power variant of the standard TTL where lower power dissipation is
achieved at the expense of reduced speed of operation. Figure 5.17 shows the internal schematic of a

B

Q1

Q2

D2
R4
12 K

Q4

Q3
D1

Y

+VCC

R3
500

R2
20K

R1
40K

A

D3

GND

Figure 5.17 NAND gate in the low-power TTL.

134 Digital Electronics

low-power TTL NAND gate. The circuit shown is that of one of the four gates inside a quad two-input
NAND (type 74L00 or 54L00). The circuit, as we can see, is the same as that of the standard TTL
NAND gate except for an increased resistance value of the different resistors used in the circuit.
Increased resistance values lead to lower power dissipation.

5.3.3.1 Characteristic Features

Characteristic features of this family are summarized as follows: VIH = 2 V; VIL = 0.7 V; IIH = 10 �A;
IIL = 0.18 mA; VOH = 2.4 V; VOL = 0.4 V; IOH = 200 �A; IOL = 3.6 mA; VCC = 4.75–5.25 V (74-series)
and 4.5–5.5 V (54-series); propagation delay (for a load resistance of 4000 �, a load capacitance
of 50 pF, VCC = 5 V and an ambient temperature of 25 °C) = 60 ns (max.) for both LOW-to-HIGH
and HIGH-to-LOW output transitions; worst-case noise margin = 0.3 V; fan-out = 20; ICCH (for all
four gates) = 0.8 mA; ICCL (for all four gates) = 2.04 mA; operating temperature range = 0–70 °C (74-
series) and −55 to +125 °C (54-series); speed–power product = 33 pJ; maximum flip-flop toggle
frequency = 3 MHz.

5.3.4 High-Power TTL (74H/54H)

The high-power TTL is a high-power, high-speed variant of the standard TTL where improved speed
(reduced propagation delay) is achieved at the expense of higher power dissipation. Figure 5.18 shows
the internal schematic of a high-power TTL NAND gate. The circuit shown is that of one of the four
gates inside a quad two-input NAND (type 74H00 or 54H00). The circuit, as we can see, is nearly
the same as that of the standard TTL NAND gate except for the transistor Q3–diode D1 combination
in the totem-pole output stage having been replaced by a Darlington arrangement comprising Q3, Q5

and R5. The Darlington arrangement does the same job as diode D1 in the conventional totem-pole
arrangement. It ensures that Q5 does not conduct at all when the output is LOW. The decreased
resistance values of different resistors used in the circuit lead to higher power dissipation.

B

Q1

Q2

D2
R4
470

Q4

Q5
Y

+VCC
R3
50

R2
760

R1
2.8K

A

GND

R5
4K

Q3

D1

Figure 5.18 NAND gate in the high-power TTL.

Logic Families 135

5.3.4.1 Characteristic Features

Characteristic features of this family are summarized as follows: VIH = 2 V; VIL = 0.8 V; IIH = 50 �A;
IIL = 2 mA; VOH = 2.4 V; VOL = 0.4 V; IOH = 500 �A; IOL = 20 mA; VCC = 4.75–5.25 V (74-series)
and 4.5–5.5 V (54-series); propagation delay (for a load resistance of 280 �, a load capacitance
of 25 pF, VCC = 5 V and an ambient temperature of 25 °C) = 10 ns (max.) for both LOW-to-HIGH
and HIGH-to-LOW output transitions; worst–case noise margin = 0.4 V; fan-out = 10; ICCH (for
all four gates) = 16.8 mA; ICCL (for all four gates) = 40 mA; operating temperature range = 0–70 °C
(74-series) and −55 to +125 °C (54-series); speed–power product = 132 pJ; maximum flip-flop
frequency = 50 MHz.

5.3.5 Schottky TTL (74S/54S)

The Schottky TTL offers a speed that is about twice that offered by the high-power TTL for the
same power consumption. Figure 5.19 shows the internal schematic of a Schottky TTL NAND gate.
The circuit shown is that of one of the four gates inside a quad two-input NAND (type 74S00 or
54S00). The circuit, as we can see, is nearly the same as that of the high-power TTL NAND gate.
The transistors used in the circuit are all Schottky transistors with the exception of Q5. A Schottky
Q5 would serve no purpose, with Q4 being a Schottky transistor. A Schottky transistor is nothing
but a conventional bipolar transistor with a Schottky diode connected between its base and collector
terminals. The Schottky diode with its metal–semiconductor junction not only is faster but also offers
a lower forward voltage drop of 0.4 V as against 0.7 V for a P–N junction diode for the same value of
forward current. The presence of a Schottky diode does not allow the transistor to go to deep saturation.
The moment the collector voltage of the transistor tends to go below about 0.3 V, the Schottky diode
becomes forward biased and bypasses part of the base current through it. The collector voltage is thus
not allowed to go to the saturation value of 0.1 V and gets clamped around 0.3 V. While the power
consumption of a Schottky TTL gate is almost the same as that of a high-power TTL gate owing to
nearly the same values of the resistors used in the circuit, the Schottky TTL offers a higher speed on
account of the use of Schottky transistors.

Input B

Q1

Q2

D2 R6
500

Q4

Q5

Y

+VCC
R3
50

R2
900

R1
2.8K

Input A

GND

R5
3.5K

Q3

D1
R4
250

Q6

Figure 5.19 NAND gate in the Schottky TTL.

136 Digital Electronics

5.3.5.1 Characteristic Features

Characteristic features of this family are summarized as follows: VIH = 2 V; VIL = 0.8 V; IIH = 50 �A;
IIL = 2 mA; VOH = 2.7 V; VOL = 0.5 V; IOH = 1 mA; IOL = 20 mA; VCC = 4.75–5.25 V (74-series) and
4.5–5.5 V (54-series); propagation delay (for a load resistance of 280 �, a load capacitance of 15 pF,
VCC = 5 V and an ambient temperature of 25 °C) = 5 ns (max.) for LOW-to-HIGH and 4.5 ns (max.)
for HIGH-to-LOW output transitions; worst-case noise margin = 0.3 V; fan-out = 10; ICCH (for all
four gates) = 16 mA; ICCL (for all four gates) = 36 mA; operating temperature range = 0–70 °C (74-
series) and −55 to +125 °C (54-series); speed–power product = 57 pJ; maximum flip-flop toggle
frequency = 125 MHz.

5.3.6 Low-Power Schottky TTL (74LS/54LS)

The low-power Schottky TTL is a low power consumption variant of the Schottky TTL. Figure 5.20
shows the internal schematic of a low-power Schottky TTL NAND gate. The circuit shown is that of
one of the four gates inside a quad two-input NAND (type 74LS00 or 54LS00). We can notice the
significantly increased value of resistors R1 and R2 used to achieve lower power consumption. Lower
power consumption, of course, occurs at the expense of reduced speed or increased propagation delay.
Resistors R3 and R5, which primarily affect speed, have not been increased in the same proportion
with respect to the corresponding values used in the Schottky TTL as resistors R1 and R2. That is why,
although the low-power Schottky TTL draws an average maximum supply current of 3 mA (for all four
gates) as against 26 mA for the Schottky TTL, the propagation delay is 15 ns in LS-TTL as against
5 ns for S-TTL. Diodes D3 and D4 reduce the HIGH-to-LOW propagation delay. While D3 speeds
up the turn-off of Q4, D4 sinks current from the load. Another noticeable difference in the internal
schematics of the low-power Schottky TTL NAND and Schottky TTL NAND is the replacement of the

VCC

Y

GND

Q4

R7
3K

R5
4K

Q3

Q5

R3
120

R2
8K

R1
20K

D1

D2

Input A

Input B

R6
1.5K

Q2

Q1 D3

D4

12K
R4

D6D5

Figure 5.20 NAND gate in the low-power Schottky TTL.

Logic Families 137

multi-emitter input transistor of the Schottky TTL by diodes D1 and D2 and resistor R1. The junction
diodes basically replace the two emitter-base junctions of the multi-emitter input transistor Q1 of the
Schottky TTL NAND (Fig. 5.19). The reason for doing so is that Schottky diodes can be made smaller
than the transistor and therefore will have lower parasitic capacitances. Also, since Q1 of LS-TTL (Fig.
5.20) cannot saturate, it is not necessary to remove its base charge with a bipolar junction transistor.

5.3.6.1 Characteristic Features

Characteristic features of this family are summarized as follows: VIH = 2 V; VIL = 0.8 V; IIH = 20 �A;
IIL = 0.4 mA; VOH = 2.7 V; VOL = 0.5 V; IOH = 0.4 mA; IOL = 8 mA; VCC = 4.75–5.25 V (74-series) and
4.5–5.5 V (54-series); propagation delay (for a load resistance of 280 �, a load capacitance of
15 pF, VCC = 5 V and an ambient temperature of 25 °C) = 15 ns (max.) for both LOW-to-HIGH and
HIGH-to-LOW output transitions; worst-case noise margin = 0.3 V; fan-out = 20; ICCH (for all four
gates) = 1.6 mA; ICCL (for all four gates) = 4.4 mA; operating temperature range = 0–70 °C (74-
series) and −55 to +125 °C (54-series); speed–power product = 18 pJ; maximum flip-flop toggle
frequency = 45 MHz.

5.3.7 Advanced Low-Power Schottky TTL (74ALS/54ALS)

The basic ideas behind the development of the advanced low-power Schottky TTL (ALS-TTL) and
advanced Schottky TTL (AS-TTL) discussed in Section 5.3.8 were further to improve both speed
and power consumption performance of the low-power Schottky TTL and Schottky TTL families
respectively. In the TTL subfamilies discussed so far, we have seen that different subfamilies achieved
improved speed at the expense of increased power consumption, or vice versa. For example, the low-
power TTL offered lower power consumption over standard TTL at the cost of reduced speed. The
high-power TTL, on the other hand, offered improved speed over the standard TTL at the expense of
increased power consumption. ALS-TTL and AS-TTL incorporate certain new circuit design features
and fabrication technologies to achieve improvement of both parameters. Both ALS-TTL and AS-TTL
offer an improvement in speed–power product respectively over LS-TTL and S-TTL by a factor of 4.
Salient features of ALS-TTL and AS-TTL include the following:

1. All saturating transistors are clamped by using Schottky diodes. This virtually eliminates the storage
of excessive base charge, thus significantly reducing the turn-off time of the transistors. Elimination
of transistor storage time also provides stable switching times over the entire operational temperature
range.

2. Inputs and outputs are clamped by Schottky diodes to limit the negative-going excursions.
3. Both ALS-TTL and AS-TTL use ion implantation rather than a diffusion process, which allows

the use of small geometries leading to smaller parasitic capacitances and hence reduced switching
times.

4. Both ALS-TTL and AS-TTL use oxide isolation rather than junction isolation between transistors.
This leads to reduced epitaxial layer–substrate capacitance, which further reduces the switching
times.

5. Both ALS-TTL and AS-TTL offer improved input threshold voltage and reduced low-level input
current.

6. Both ALS-TTL and AS-TTL feature active turn-off of the LOW-level output transistor, producing
a better HIGH-level output voltage and thus a higher HIGH-level noise immunity.

138 Digital Electronics

R1
37K

R2
50K

R3
14K

R7
50

VCC

Q7
R4

5K

Q6

Q2

D3

Q1A

D2A

D1A

Input A

Q3

R5
2.8K

R6
5.6K

Q5

Q4

D2BD1B

Input B

Q1B

D4

Output

Figure 5.21 NAND gate in the ALS-TTL.

Figure 5.21 shows the internal schematic of an advanced low-power Schottky TTL NAND gate. The
circuit shown is that of one of the four gates inside a quad two-input NAND (type 74ALS00 or
54ALS00) The multi-emitter input transistor is replaced by two PNP transistors Q1A and Q1B. Diodes
D1A and D1B provide input clamping to negative excursions. Buffering offered by Q1A or Q1B and Q2

reduces the LOW-level input current by a factor of (1 + hFE of Q1A�. HIGH-level output voltage is
determined primarily by VCC, transistors Q6 and Q7 and resistors R4 and R7 and is typically (VCC −2)
V. LOW-level output voltage is determined by the turn-on characteristics of Q5. Transistor Q5 gets
sufficient base drive through R3 and a conducting Q3 whose base terminal in turn is driven by a
conducting Q2 whenever either or both inputs are HIGH. Transistor Q4 provides active turn-off for Q5.

5.3.7.1 Characteristic Features

Characteristic features of this family are summarized as follows: VIH = 2 V; VIL = 0.8 V; IIH = 20 �A;
IIL = 0.1 mA; VOH = (VCC −2) V; VOL = 0.5 V; IOH = 0.4 mA; IOL = 8 mA (74ALS) and 4 mA (54ALS);

Logic Families 139

VCC = 4.5–5.5 V; propagation delay (for a load resistance of 500 �, a load capacitance of 50 pF,
VCC = 4.5–5.5 V and an ambient temperature of minimum to maximum) = 11 ns/16 ns (max.) for
LOW-to-HIGH and 8 ns/13 ns for HIGH-to-LOW output transitions (74ALS/54ALS); worst-case noise
margin = 0.3 V; fan-out = 20; ICCH (for all four gates) = 0.85 mA; ICCL (for all four gates) = 3 mA;
operating temperature range = 0–70 °C (74-series) and −55 to +125 °C (54-series); speed–power
product = 4.8 pJ; maximum flip-flop toggle frequency = 70 MHz.

5.3.8 Advanced Schottky TTL (74AS/54AS)

Figure 5.22 shows the internal schematic of an advanced Schottky TTL NAND gate. The circuit shown
is that of one of the four gates inside a quad two-input NAND (type 74AS00 or 54AS00). Salient

R1
10K

R2
2K

R6
26

VCC

Q7R3
2K

Q6

Q2

Q1A

D2A

D1A

Input A

Q3

R4
1K

R5
2K

Q5

Q4

D2B

D1B

Input B

Q1B

D3

R9
30K

D5

Q9

R8
1K

D4

R7
50K

D6
D7

R11
100

Q10
R10
25K

Q8

D9

Output

D8

Figure 5.22 NAND gate in the AS-TTL.

140 Digital Electronics

features of ALS-TTL and AS-TTL have been discussed at length in the preceding paragraphs. As is
obvious from the internal circuit schematic of the AS-TTL NAND gate, it has some additional circuits
not found in ALS-TTL devices. These are added to enhance the throughput of AS-TTL family devices.
Transistor Q10 provides a discharge path for the base-collector capacitance of Q5. In the absence of
Q10, a rising voltage across the output forces current into the base of Q5 through its base-collector
capacitance, thus causing it to turn on. Transistor Q10 turns on through D9, thus keeping transistor Q5

in the cut-off state.

5.3.8.1 Characteristic Features

Characteristic features of this family are summarized as follows: VIH = 2 V; VIL = 0.8 V; IIH = 20 �A;
IIL = 0.5 mA; VOH = (VCC −2) V; VOL = 0.5 V; IOH = 2 mA; IOL = 20 mA; VCC = 4.5–5.5 V; propagation
delay (for a load resistance of 50 �, a load capacitance of 50 pF, VCC = 4.5–5.5 V and an ambient
temperature of minimum to maximum) = 4.5 ns/5 ns (max.) for LOW-to-HIGH and 4 ns/5 ns (max.) for
HIGH-to-LOW output transitions (74AS/54AS); worst-case noise margin = 0.3 V; fan-out = 40; ICCH

(for all four gates) = 3.2 mA; ICCL (for all four gates) = 17.4 mA; operating temperature range = 0–70 °C
(74-series) and −55 to +125 °C (54-series); speed–power product = 13.6 pJ; maximum flip-flop toggle
frequency = 200 MHz.

5.3.9 Fairchild Advanced Schottky TTL (74F/54F)

The Fairchild Advanced Schottky TTL family, commonly known as FAST logic, is similar to the
AS-TTL family. Figure 5.23 shows the internal schematic of a Fairchild Advanced Schottky TTL

R1
10K

R2
10K

R3
4.1K

R4
45

Q4

Q3

R5
5K

D5

D6 D7
Q5

D10

GND

Q6

D8 D9

Q7

R7

2K

R8

3K
R6

15K
D12

D4

D2

D11

Input B

Input A
D1

D3

Q1

VCC

Output Y

Q2

Figure 5.23 NAND gate in the FAST TTL.

Logic Families 141

NAND gate. The circuit shown is that of one of the four gates inside a quad two-input NAND (type
74F00 or 54F00). The DTL kind of input with emitter follower configuration of Q1 provides a good
base drive to Q2. The ‘Miller killer’ configuration comprising varactor diode D7, transistor Q6 and
associated components speeds up LOW-to-HIGH transition. During LOW-to-HIGH transition, voltage
at the emitter terminal of Q3 begins to rise while Q5 is still conducting. Varactor diode D7 conducts,
thus supplying base current to Q6. A conducting Q6 provides a discharge path for the charge stored in
the base-collector capacitance of Q5, thus expediting its turn-off.

5.3.9.1 Characteristic Features

Characteristic features of this family are summarized as follows: VIH = 2 V; VIL = 0.8 V; IIH = 20 �A;
IIL = 0.6 mA; VOH = 2.7 V; VOL = 0.5 V; IOH = 1 mA; IOL = 20 mA; VCC = 4.75–5.25 V (74F) and 4.5–
5.5 V (54F); propagation delay (a load resistance of 500 �, a load capacitance of 50 pF and full
operating voltage and temperature ranges) = 5.3 ns/7 ns (max.) for LOW-to-HIGH and 6 ns/6.5 ns
(max.) for HIGH-to-LOW output transitions (74AS/54AS); worst-case noise margin = 0.3 V; fan-
out = 40; ICCH (for all four gates) = 2.8 mA; ICCL (for all four gates) = 10.2 mA; operating temperature
range = 0–70 °C (74F-series) and −55 to +125 °C (54F-series); speed–power product = 10 pJ;
maximum flip-flop toggle frequency = 125 MHz.

5.3.10 Floating and Unused Inputs

The floating input of TTL family devices behaves as if logic HIGH has been applied to the input. Such
behaviour is explained from the input circuit of a TTL device. When the input is HIGH, the input
emitter-base junction is reverse biased and the current that flows into the input is the reverse-biased
diode leakage current. The input diode will be reverse biased even when the input terminal is left
unconnected or floating, which implies that a floating input behaves as if there were logic HIGH
applied to it.

As an initial thought, we may tend to believe that it should not make any difference if we leave
the unused inputs of NAND and AND gates as floating, as logic HIGH like behaviour of the floating
input makes no difference to the logical behaviour of the gate, as shown in Figs 5.24(a) and (b). In
spite of this, it is strongly recommended that the unused inputs of AND and NAND gates be connected
to a logic HIGH input [Fig. 5.24(c)] because floating input behaves as an antenna and may pick up
stray noise and interference signals, thus causing the gate to function improperly. 1 k� resistance is
connected to protect the input from any current spikes caused by any spikes on the power supply line.
More than one unused input (up to 50) can share the same 1 k� resistance, if needed.

In the case of OR and NOR gates, unused inputs are connected to ground (logic LOW), as shown in
Fig. 5.25(c), for obvious reasons. A floating input or an input tied to logic HIGH in this case produces
a permanent logic HIGH (for an OR gate) and LOW (for a NOR gate) at the output as shown in
Figs 5.25(a) and (b) respectively. An alternative solution is shown in Fig. 5.25(d), where the unused
input has been tied to one of the used inputs. This solution works well for all gates, but one has to be
conscious of the fact that the fan-out capability of the output driving the tied inputs is not exceeded.

If we recall the internal circuit schematics of AND and NAND gates, we will appreciate that, when
more than one input is tied together, the input loading, that is, the current drawn by the tied inputs
from the driving gate output, in the HIGH state is n times the loading of one input (Fig. 5.26); n is
the number of inputs tied together. When the output is LOW, the input loading is the same as that of
a single input. The reason for this is that, in the LOW input state, the current flowing out of the gate
is determined by the resistance R1, as shown in Fig. 5.27. However, the same is not true in the case of

142 Digital Electronics

Figure 5.24 Handling unused inputs of AND and NAND gates.

OR and NOR gates, which do not use a multi-emitter input transistor and use separate input transistors
instead, as shown in Fig. 5.28. In this case, the input loading is n times the loading of a single input
for both HIGH and LOW states.

5.3.11 Current Transients and Power Supply Decoupling

TTL family devices are prone to occurrence of narrow-width current spikes on the power supply line.
Current transients are produced when the totem-pole output stage of the device undergoes a transition
from a logic LOW to a logic HIGH state. The problem becomes severe when in a digital circuit a
large number of gates are likely to switch states at the same time. These current spikes produce voltage
spikes due to any stray inductance present on the line. On account of the large rate of change in current
in the current spike, even a small value of stray inductance produces voltage spikes large enough
adversely to affect the circuit performance.

Figure 5.29 illustrates the phenomenon. When the output changes from LOW to HIGH, there is
a small fraction of time when both the transistors are conducting because the pull-up transistor Q3

has switched on and the pull-down transistor Q4 has not yet come out of saturation. During this
small fraction of time, there is an increase in current drawn from the supply; ICCL experiences a
positive spike before it settles down to a usually lower ICCH. The presence of any stray capacitance
C across the output owing to any stray wiring capacitance or capacitance loading of the circuit being
fed also adds to the problem. The problem of voltage spikes on the power supply line is usually
overcome by connecting small-value, low-inductance, high-frequency capacitors between VCC terminal
and ground. It is standard practice to use a 0.01 or 0.1 �F ceramic capacitor from VCC to ground. This

Logic Families 143

Figure 5.25 Handling unused inputs of OR and NOR gates.

capacitor is also known by the name of power supply decoupling capacitor, and it is recommended
to use a separate capacitor for each IC. A decoupling capacitor is connected as close to the VCC

terminal as possible, and its leads are kept to a bare minimum to minimize lead inductance. In
addition, a single relatively large-value capacitor in the range of 1–22 �F is also connected between
VCC and ground on each circuit card to take care of any low-frequency voltage fluctuations in the
power supply line.

Example 5.5

Refer to Fig. 5.30. Determine the current being sourced by gate 1 when its output is HIGH and sunk
by it when its output is LOW. All gates are from the standard TTL family, given that IIH = 40 �A and
IIL = 1.6 mA.

144 Digital Electronics

Driven GateDriving Gate

IIH

IIH

IOH

+VCC+VCC

R1

Figure 5.26 Input loading in the case of HIGH tied inputs of NAND and AND gates.

Driven GateDriving Gate

IIL

+VCC+VCC

R1

Q1

IOL

Figure 5.27 Input loading in the case of LOW tied inputs of NAND and AND gates.

Solution
• When the output is HIGH, the inputs of all gates draw current individually.
• Therefore, the input loading factor = equivalent of seven gate inputs = 7 × 40 �A = 280 �A.
• The current being sourced by the gate 1 output = 280 �A.
• When the output is LOW, shorted inputs of AND and NAND gates offer a load equal to that of a

single input owing to a multi-emitter transistor at the input of the gate. The inputs of OR and NOR
gates draw current individually on account of the use of separate transistors at the input of the gate.

• Therefore, the input loading factor = equivalent of five gate inputs = 5 × 1.6 = 8 mA.
• The current being sunk by the gate 1 output = 8 mA.

Logic Families 145

Figure 5.28 Input loading in the case of tied inputs of NOR and OR gates.

C

+VCC

ICC

Output

Q4

Q3

Figure 5.29 Current transients and power supply decoupling.

Example 5.6

Refer to the logic diagram of Fig. 5.31. Gate 1 and gate 4 belong to the standard TTL family,
while gate 2 and gate 3 belong to the Schottky TTL family and the low-power Schottky TTL family
respectively. Determine whether the fan-out capability of gate 1 is being exceeded. Relevant data for
the three logic families are given in Table 5.1.

146 Digital Electronics

Figure 5.30 Example 5.5.

Schottky TTL

Low Power
Schottky TTL

Standard TTL

2

3

4

1

Standard TTL

Figure 5.31 Example 5.6.

Table 5.1 Example 5.6

Logic family IIH(�A) IOH(mA) IIL(mA) IOL(mA)

Standard TTL 40 0.4 1.6 16
LS-TTL 20 0.4 0.4 8.0
S-TTL 50 1.0 2.0 20

Solution
• In the HIGH-state:

– the gate 1 output sourcing capability = 400 �A;
– the gate 2 input requirement = 50 × 4 = 200 �A;
– the gate 3 input requirement = 20 × 2 = 40 �A;
– the gate 4 input requirement = 40 × 4 = 160 �A;
– the total input current requirement = 400 �A;
– therefore, the fan-out is not exceeded in the HIGH state.

Logic Families 147

• In the LOW-state,

– the gate 1 output sinking capability = 16 mA;
– the gate 2 input sinking requirement = 2 mA;
– the gate 3 input sinking requirement = 0.4 × 2 = 0.8 mA;
– the gate 4 input sinking requirement = 1.6 mA;
– the total input current requirement = 4.4 mA;
– since the output of gate 1 has a current sinking capability of 16 mA, the fan-out capability is not

exceeded in the LOW state either.

5.4 Emitter Coupled Logic (ECL)
The ECL family is the fastest logic family in the group of bipolar logic families. The characteristic
features that give this logic family its high speed or short propagation delay are outlined as follows:

1. It is a nonsaturating logic. That is, the transistors in this logic are always operated in the active
region of their output characteristics. They are never driven to either cut-off or saturation, which
means that logic LOW and HIGH states correspond to different states of conduction of various
bipolar transistors.

2. The logic swing, that is, the difference in the voltage levels corresponding to logic LOW and HIGH
states, is kept small (typically 0.85 V), with the result that the output capacitance needs to be
charged and discharged by a relatively much smaller voltage differential.

3. The circuit currents are relatively high and the output impedance is low, with the result that the
output capacitance can be charged and discharged quickly.

5.4.1 Different Subfamilies

Different subfamilies of ECL logic include MECL-I, MECL-II, MECL-III, MECL 10K, MECL 10H
and MECL 10E (ECLinPSTMand ECLinPS LiteTM�.

5.4.1.1 MECL-I, MECL-II and MECL-III Series

MECL-I was the first monolithic emitter coupled logic family introduced by ON Semiconductor
(formerly a division of Motorola SPS) in 1962. It was subsequently followed up by MECL-II in 1966.
Both these logic families have become obsolete and have been replaced by MECL-III (also called
the MC1600 series) introduced in 1968. Although, chronologically, MECL-III was introduced before
the MECL-10K and MECL-10H families, it features higher speed than both of its successors. With a
propagation delay of the order of 1 ns and a flip-flop toggle frequency of 500 MHz, MECL-III is used
in high-performance, high-speed systems.

The basic characteristic parameters of MECL-III are as follows: gate propagation delay = 1 ns;
output edge speed (indicative of the rise and fall time of output transition) = 1 ns; flip-flop
toggle frequency = 500 MHz; power dissipation per gate = 50 mW; speed–power product = 60 pJ;
input voltage = 0–VEE (VEE is the negative supply voltage); negative power supply range (for
VCC = 0) = −5.1V to −5.3 V; continuous output source current (max.) = 40 mA; surge output source
current (max.) = 80 mA; operating temperature range = −30 °C to +85 °C.

148 Digital Electronics

5.4.1.2 MECL-10K Series

The MECL-10K family was introduced in 1971 to meet the requirements of more general-purpose high-
speed applications. Another important feature of MECL-10K family devices is that they are compatible
with MECL-III devices, which facilitates the use of devices of the two families in the same system. The
increased propagation delay of 2 ns in the case of MECL-10K comes with the advantage of reduced
power dissipation, which is less than half the power dissipation in MECL-III family devices.

The basic characteristic parameters of MECL-10K are as follows: gate propagation delay = 2 ns
(10100-series) and 1.5 ns (10200-series); output edge speed = 3.5 ns (10100-series) and 2.5 ns (10200-
series); flip-flop toggle frequency = 125 MHz (min.) in the 10100-series and 200 MHz (min.) in the
10200-series; power dissipation per gate = 25 mW; speed–power product = 50 pJ (10100-series) and
37 pJ (10200-series); input voltage = 0–VEE (VEE is the negative supply voltage); negative power
supply range (for VCC = 0) = −4.68 to −5.72 V; continuous output source current (max.) = 50 mA;
surge output source current (max.) = 100 mA; operating temperature range = −30 °C to +85 °C.

5.4.1.3 MECL-10H Series

The MECL-10H family, introduced in 1981, combines the high speed advantage of MECL-III with
the lower power dissipation of MECL-10K. That is, it offers the speed of MECL-III with the power
economy of MECL-10K. Backed by a propagation delay of 1 ns and a power dissipation of 25 mW
per gate, MECL-10H offers one of the best speed–power product specifications in all available ECL
subfamilies. Another important aspect of this family is that many of the MECL-10H devices are pin-
out/functional replacements of MECL-10K series devices, which allows the users or the designers to
enhance the performance of existing systems by increasing speed in critical timing areas.

The basic characteristic parameters of MECL-10H are as follows: gate propagation delay = 1 ns;
output edge speed = 1 ns; flip-flop toggle frequency = 250 MHz (min.); power dissipation per
gate = 25 mW; speed–power product = 25 pJ; input voltage = 0–VEE (VEE is the negative supply
voltage); negative power supply range (for VCC = 0) = −4.94 to −5.46 V; continuous output source
current (max.) = 50 mA; surge output source current (max.) = 100 mA; operating temperature
range = 0 °C to + 75 °C.

5.4.1.4 MECL-10E Series (ECLinPSTM and ECLinPSLiteTM)

The ECLinPSTM family, introduced in 1987, has a propagation delay of the order of 0.5 ns.
ECLinPSLiteTM is a recent addition to the ECL family. It offers a propagation delay of the order of
0.2 ns. The ECLPro™ family of devices is a rapidly growing line of high-performance ECL logic,
offering a significant speed upgrade compared with the ECLinPSLiteTM devices.

5.4.2 Logic Gate Implementation in ECL

OR/NOR is the fundamental logic gate of the ECL family. Figure 5.32 shows a typical internal
schematic of an OR/NOR gate in the 10K-series MECL family. The circuit in essence comprises a
differential amplifier input circuit with one side of the differential pair having multiple transistors
depending upon the number of inputs to the gate, a voltage- and temperature-compensated bias network
and emitter follower outputs. The internal schematic of the 10H-series gate is similar, except that the
bias network is replaced with a voltage regulator circuit and the source resistor REE of the differential
amplifier is replaced with a constant current source. Typical values of power supply voltages are

Logic Families 149

Inputs

VEE

Bias
Network

OR O/P
Q7

VCC

Q6

Q5Q4Q3Q2Q1

Q8
NOR O/P

REE

Figure 5.32 OR/NOR in ECL.

VCC = 0 and VEE=−5.2 V. The nominal logic levels are logic LOW = logic ‘0’ = −1.75 V and logic
HIGH = logic ‘1’ = −0.9 V, assuming a positive logic system. The circuit functions as follows.

The bias network configured around transistor Q6 produces a voltage of typically −1.29 V at its
emitter terminal. This leads to a voltage of −2.09 V at the junction of all emitter terminals of various
transistors in the differential amplifier, assuming 0.8 V to be the required forward-biased P–N junction
voltage. Now, let us assume that all inputs are in a logic ‘0’ state, that is, the voltage at the base
terminals of various input transistors is −1.75 V. This means that the transistors Q1, Q2, Q3 and Q4

will remain in cut-off as their base-emitter junctions are not forward biased by the required voltage.
This leads us to say that transistor Q7 is conducting, producing a logic ‘0’ output, and transistor Q8 is
in cut-off, producing a logic ‘1’ output.

In the next step, let us see what happens if any one or all of the inputs are driven to logic ‘1’ status,
that is, a nominal voltage of −0.9 V is applied to the inputs. The base-emitter voltage differential of
transistors Q1–Q4 exceeds the required forward-biasing threshold, with the result that these transistors
start conducting. This leads to a rise in voltage at the common-emitter terminal, which now becomes
approximately −1.7 V as the common-emitter terminal is now 0.8 V more negative than the base-
terminal voltage. With rise in the common-emitter terminal voltage, the base-emitter differential voltage
of Q5 becomes 0.31 V, driving Q5 to cut-off. The Q7 and Q8 emitter terminals respectively go to logic
‘1’ and logic ‘0’.

This explains how this basic schematic functions as an OR/NOR gate. We will note that the
differential action of the switching transistors (where one section is ON while the other is OFF) leads
to simultaneous availability of complementary signals at the output. Figure 5.33 shows the circuit
symbol and switching characteristics of this basic ECL gate. It may be mentioned here that positive
ECL (called PECL) devices operating at +5 V and ground are also available. When used in PECL
mode, ECL devices must have their input/output DC parameters adjusted for proper operation. PECL
DC parameters can be computed by adding ECL levels to the new VCC.

150 Digital Electronics

Figure 5.33 ECL input/output characteristics.

We will also note that voltage changes in ECL are small, largely governed by VBE of the various
conducting transistors. In fact, the magnitude of the currents flowing through various conducting
transistors is of greater relevance to the operation of the ECL circuits. It is for this reason that emitter
coupled logic is also sometimes called current mode logic (CML).

5.4.3 Salient Features of ECL

There are many features possessed by MECL family devices other than their high speed characteristics
that make them attractive for many high-performance applications. The major ones are as follows:

1. ECL family devices produce the true and complementary output of the intended function
simultaneously at the outputs without the use of any external inverters. This in turn reduces package
count, reduces power requirements and also minimizes problems arising out of time delays that
would be caused by external inverters.

2. The ECL gate structure inherently has high input impedance and low output impedance, which is
very conducive to achieving large fan-out and drive capability.

3. ECL devices with open emitter outputs allow them to have transmission line drive capability. The
outputs match any line impedance. Also, the absence of any pull-down resistors saves power.

4. ECL devices produce a near-constant current drain on the power supply, which simplifies power
supply design.

5. On account of the differential amplifier design, ECL devices offer a wide performance flexibility,
which allows ECL circuits to be used both as linear and as digital circuits.

6. Termination of unused inputs is easy. Resistors of approximately 50 k� allow unused inputs to
remain unconnected.

Logic Families 151

5.5 CMOS Logic Family
The CMOS (Complementary Metal Oxide Semiconductor) logic family uses both N-type and P-type
MOSFETs (enhancement MOSFETs, to be more precise) to realize different logic functions. The
two types of MOSFET are designed to have matching characteristics. That is, they exhibit identical
characteristics in switch-OFF and switch-ON conditions. The main advantage of the CMOS logic
family over bipolar logic families discussed so far lies in its extremely low power dissipation, which is
near-zero in static conditions. In fact, CMOS devices draw power only when they are switching. This
allows integration of a much larger number of CMOS gates on a chip than would have been possible
with bipolar or NMOS (to be discussed later) technology. CMOS technology today is the dominant
semiconductor technology used for making microprocessors, memory devices and application-specific
integrated circuits (ASICs). The CMOS logic family, like TTL, has a large number of subfamilies. The
prominent members of CMOS logic were listed in an earlier part of the chapter. The basic difference
between different CMOS logic subfamilies such as 4000A, 4000B, 4000UB, 74C, 74HC, 74HCT,
74AC and 74ACT is in the fabrication process used and not in the design of the circuits employed to
implement the intended logic function. We will firstly look at the circuit implementation of various
logic functions in CMOS and then follow this up with a brief description of different subfamilies of
CMOS logic.

5.5.1 Circuit Implementation of Logic Functions

In the following paragraphs, we will briefly describe the internal schematics of basic logic functions
when implemented in CMOS logic. These include inverter, NAND, NOR, AND, OR, EX-OR, EX-NOR
and AND-OR-INVERT functions.

5.5.1.1 CMOS Inverter

The inverter is the most fundamental building block of CMOS logic. It consists of a pair of N-channel
and P-channel MOSFETs connected in cascade configuration as shown in Fig. 5.34. The circuit

A

VDD

Q1

Q2

Y=A

Figure 5.34 CMOS inverter.

152 Digital Electronics

functions as follows. When the input is in the HIGH state (logic ‘1’), P-channel MOSFET Q1 is in
the cut-off state while the N-channel MOSFET Q2 is conducting. The conducting MOSFET provides
a path from ground to output and the output is LOW (logic ‘0’). When the input is in the LOW state
(logic ‘0’), Q1 is in conduction while Q2 is in cut-off. The conducting P-channel device provides a path
for VDD to appear at the output, so that the output is in HIGH or logic ‘1’ state. A floating input could
lead to conduction of both MOSFETs and a short-circuit condition. It should therefore be avoided. It
is also evident from Fig. 5.34 that there is no conduction path between VDD and ground in either of
the input conditions, that is, when input is in logic ‘1’ and ‘0’ states. That is why there is practically
zero power dissipation in static conditions. There is only dynamic power dissipation, which occurs
during switching operations as the MOSFET gate capacitance is charged and discharged. The power
dissipated is directly proportional to the switching frequency.

5.5.1.2 NAND Gate

Figure 5.35 shows the basic circuit implementation of a two-input NAND. As shown in the figure, two
P-channel MOSFETs (Q1 and Q2� are connected in parallel between VDD and the output terminal, and
two N-channel MOSFETs (Q3 and Q4� are connected in series between ground and output terminal.
The circuit operates as follows. For the output to be in a logic ‘0’ state, it is essential that both the
series-connected N-channel devices conduct and both the parallel-connected P-channel devices remain
in the cut-off state. This is possible only when both the inputs are in a logic ‘1’ state. This verifies
one of the entries of the NAND gate truth table. When both the inputs are in a logic ‘0’ state, both the
N-channel devices are nonconducting and both the P-channel devices are conducting, which produces
a logic ‘1’ at the output. This verifies another entry of the NAND truth table. For the remaining two
input combinations, either of the two N-channel devices will be nonconducting and either of the two
parallel-connected P-channel devices will be conducting. We have either Q3 OFF and Q2 ON or Q4

OFF and Q1 ON. The output in both cases is a logic ‘1’, which verifies the remaining entries of the
truth table.

Y = A.B

VDD

Q1Q2

Q3

Q4

A

B

Figure 5.35 CMOS NAND.

Logic Families 153

Y=A.B.C

A

B

C

Q1

VDD

Q4

Q5

Q6

Q2Q3

Figure 5.36 Three-input NAND in CMOS.

From the circuit schematic of Fig. 5.35 we can visualize that under no possible input combination
of logic states is there a direct conduction path between VDD and ground. This further confirms that
there is near-zero power dissipation in CMOS gates under static conditions. Figure 5.36 shows how
the circuit of Fig. 5.35 can be extended to build a three-input NAND gate. Operation of this circuit
can be explained on similar lines. It may be mentioned here that series connection of MOSFETs adds
to the propagation delay, which is greater in the case of P-channel devices than it is in the case of
N-channel devices. As a result, the concept of extending the number of inputs as shown in Fig. 5.36
is usually limited to four inputs in the case of NAND and to three inputs in the case of NOR. The
number is one less in the case of NOR because it uses series-connected P-channel devices. NAND and
NOR gates with larger inputs are realized as a combination of simpler gates.

5.5.1.3 NOR Gate

Figure 5.37 shows the basic circuit implementation of a two-input NOR. As shown in the figure, two
P-channel MOSFETs (Q1 and Q2� are connected in series between VDD and the output terminal, and
two N-channel MOSFETs (Q3 and Q4� are connected in parallel between ground and output terminal.
The circuit operates as follows. For the output to be in a logic ‘1’ state, it is essential that both the
series-connected P-channel devices conduct and both the parallel-connected N-channel devices remain
in the cut-off state. This is possible only when both the inputs are in a logic ‘0’ state. This verifies
one of the entries of the NOR gate truth table. When both the inputs are in a logic ‘1’ state, both the
N-channel devices are conducting and both the P-channel devices are nonconducting, which produces
a logic ‘0’ at the output. This verifies another entry of the NOR truth table. For the remaining two

154 Digital Electronics

Y=(A+B)

Q1

Q2

VDD

Q4Q3

A

B

Figure 5.37 Two-input NOR in CMOS.

input combinations, either of the two parallel N-channel devices will be conducting and either of the
two series-connected P-channel devices will be nonconducting. We have either Q1 OFF and Q3 ON
or Q2 OFF and Q4 ON. The output in both cases is logic ‘0’, which verifies the remaining entries of
the truth table.

Figure 5.38 shows how the circuit of Fig. 5.37 can be extended to build a three-input NOR gate.
The operation of this circuit can be explained on similar lines. As already explained, NOR gates with
more than three inputs are usually realized as a combination of simpler gates.

5.5.1.4 AND Gate

An AND gate is nothing but a NAND gate followed by an inverter. Figure 5.39 shows the internal
schematic of a two-input AND in CMOS. A buffered AND gate is fabricated by using a NOR gate
schematic with inverters at both of its inputs and its output feeding two series-connected inverters.

5.5.1.5 OR Gate

An OR gate is nothing but a NOR gate followed by an inverter. Figure 5.40 shows the internal
schematic of a two-input OR in CMOS. A buffered OR gate is fabricated by using a NAND gate
schematic with inverters at both of its inputs and its output feeding two series-connected inverters.

5.5.1.6 EXCLUSIVE-OR Gate

An EXCLUSIVE-OR gate is implemented using the logic diagram of Fig. 5.41(a). As is evident from
the figure, the output of this logic arrangement can be expressed by

��A+B�+A�B = �A�B+A�B�	 = EX −OR function (5.1)

Logic Families 155

Q1

Q2

Q3

Q4Q5Q6

Y=(A+B+C)

A

B

C

VDD

Figure 5.38 Three-input NOR.

Q5

Q6

Y=A.B

VDD

A

B

Q2

Q3

Q4

Q1

Figure 5.39 Two-input AND in CMOS.

156 Digital Electronics

Y=(A+B)

VDD

A

B

Q1

Q2

Q4Q3 Q6

Q5

Figure 5.40 Two-input OR in CMOS.

Figure 5.41(b) shows the internal schematic of a two-input EX-OR gate. MOSFETs Q1–Q4

constitute the NOR gate. MOSFETS Q5 and Q6 simulate ANDing of A and B, and MOSFET
Q7 provides ORing of the NOR output with ANDed output. Since MOSFETs Q8–Q10 make up
the complement of the arrangement of MOSFETs Q5–Q7, the final output is inverted. Thus, the
schematic of Fig. 5.41(b) implements the logic arrangement of Fig. 5.41(a) and hence a two-input
EX-OR gate.

5.5.1.7 EXCLUSIVE-NOR Gate

An EXCLUSIVE-NOR gate is implemented using the logic diagram of Fig. 5.42(a). As is evident
from the figure, the output of this logic arrangement can be expressed by

��A�B���A+B�	 = ��A+B���A+B�	 = EX −NOR function (5.2)

Figure 5.42(b) shows the internal schematic of a two-input EX-NOR gate. MOSFETs Q1–Q4

constitute the NAND gate. MOSFETS Q5 and Q6 simulate ORing of A and B, and MOSFET
Q7 provides ANDing of the NAND output with ORed output. Since MOSFETs Q8–Q10 make up
the complement of the arrangement of MOSFETs Q5–Q7, the final output is inverted. Thus, the
schematic of Fig. 5.42(b) implements the logic arrangement of Fig. 5.42(a) and hence a two-input
EX-NOR gate.

Logic Families 157

Figure 5.41 Two-input EX-OR in CMOS.

5.5.1.8 AND-OR-INVERT and OR-AND-INVERT Gates

Figure 5.43 shows the internal schematic of a typical two-wide, two-input AND-OR-INVERT gate.
The output of this gate can be logically expressed by the Boolean equation

Y = �A�B+C�D� (5.3)

From the above expression, we can say that the output should be in a logic ‘0’ state for the following
input conditions:

1. When either A�B = logic ‘1’ or C�D = logic ‘1’
2. When both A�B and C�D equal logic ‘1’.

158 Digital Electronics

Figure 5.42 Two-input EX-NOR in CMOS.

For both these conditions there is a conduction path available from ground to output, which verifies
that the circuit satisfies the logic expression. Also, according to the logic expression for the AND-OR-
INVERT gate, the output should be in a logic ‘1’ state when both A�B and C�D equal logic ‘0’. This
implies that:

1. Either A or B or both are in a logic ‘0’ state.
2. Either C or D or both are in a logic ‘0’ state.

Logic Families 159

Q5
Q6

Q8Q7

Q1 Q3

Q2 Q4

C

D

A

B

+VDD

Y=(AB+CD)

Figure 5.43 Two-wide, two-input AND-OR-INVERT gate in CMOS.

If these conditions are applied to the circuit of Fig. 5.43, we find that the ground will remain
disconnected from the output and also that there is always a path from VDD to output. This leads to
a logic ‘1’ at the output. Thus, we have proved that the given circuit implements the intended logic
expression for the AND-OR-INVERT gate.

The OR-AND-INVERT gate can also be implemented in the same way. Figure 5.44 shows a typical
internal schematic of a two-wide, two-input OR-AND-INVERT gate. The output of this gate can be
expressed by the Boolean equation

Y = �A+B���C +D� (5.4)

It is very simple to draw the internal schematic of an AND-OR-INVERT or OR-AND-INVERT gate.
The circuit has two parts, that is, the N-channel MOSFET part of the circuit and the P-channel part
of the circuit. Let us see, for instance, how Boolean equation (5.4) relates to the circuit of Fig. 5.44.
The fact that we need (A OR B� AND (C OR D� explains why the N-channel MOSFETs representing
A and B inputs are in parallel and also why the N-channel MOSFETs representing C and D are
also in parallel. The two parallel arrangements are then connected in series to achieve an ANDing
operation. The complementary P-channel MOSFET section achieves inversion. Note that the P-channel
section is the complement of the N-channel section with N-channel MOSFETs replaced by P-channel
MOSFETs and parallel connection replaced by series connection, and vice versa. The operation of an
AND-OR-INVERT gate can be explained on similar lines to the case of an OR-AND-INVERT gate.
Expansion of both AND-OR-INVERT and OR-AND-INVERT gates should be obvious, ensuring that
we do not have more than three devices in series.

160 Digital Electronics

Y=(A+B).(C+D)

D

B

C

A

+VDD

Q7 Q8

Q5 Q6

Q3 Q4

Q1 Q2

Figure 5.44 Two-wide, two-input OR-AND-INVERT gate.

5.5.1.9 Transmission Gate

The transmission gate, also called the bilateral switch, is exclusive to CMOS logic and does not have
a counterpart in the TTL and ECL families. It is essentially a single-pole, single-throw (SPST) switch.
The opening and closing operations can be controlled by externally applied logic levels. Figure 5.45(a)
shows the circuit symbol. If a logic ‘0’ at the control input corresponds to an open switch, then a
logic ‘1’ corresponds to a closed switch, and vice versa. The internal schematic of a transmission gate
is nothing but a parallel connection of an N-channel MOSFET and a P-channel MOSFET with the
control input applied to the gates, as shown in Fig. 5.45(b). Control inputs to the gate terminals of two
MOSFETs are the complement of each other. This is ensured by an inbuilt inverter.

When the control input is HIGH (logic ‘1’), both devices are conducting and the switch is closed.
When the control input is LOW (logic ‘0’), both devices are open and therefore the switch is open. It
may be mentioned here that there is no discrimination between input and output terminals. Either of
the two can be treated as the input terminal for the purpose of applying input. This is made possible
by the symmetry of the two MOSFETs.

It may also be mentioned here that the ON-resistance of a conducting MOSFET depends upon
drain and source voltages. In the case of an N-channel MOSFET, if the source voltage is close to
VDD, there is an increase in ON-resistance, leading to an increased voltage drop across the switch.
A similar phenomenon is observed when the source voltage of a P-channel MOSFET is close to

Logic Families 161

Figure 5.45 Transmission gate.

ground. Such behaviour causes no problem in static CMOS logic gates, where source terminals of
all N-channel MOSFETs are connected to ground and source terminals of all P-channel MOSFETs
are connected to VDD. This would cause a problem if a single N-channel or P-channel device were
used as a switch. Such a problem is overcome with the use of parallel connection of N-channel and
P-channel devices. Transmission gate devices are available in 4000-series as well as 74HC series
of CMOS logic.

5.5.1.10 CMOS with Open Drain Outputs

The outputs of conventional CMOS gates should never be shorted together, as illustrated by the case of
two inverters shorted at the output terminals (Fig. 5.46). If the input conditions are such that the output
of one inverter is HIGH and that of the other is LOW, the output circuit is then like a voltage divider
network with two identical resistors equal to the ON-resistance of a conducting MOSFET. The output is
then approximately equal to VDD/2, which lies in the indeterminate range and is therefore unacceptable.
Also, an arrangement like this draws excessive current and could lead to device damage.

This problem does not exist in CMOS gates with open drain outputs. Such a device is the counterpart
to gates with open collector outputs in the TTL family. The output stage of a CMOS gate with an open
drain output is a single N-channel MOSFET with an open drain terminal, and there is no P-channel
MOSFET. The open drain terminal needs to be connected to VDD through an external pull-up resistor.
Figure 5.47 shows the internal schematic of a CMOS inverter with an open drain output. The pull-up
resistor shown in the circuit is external to the device.

162 Digital Electronics

Figure 5.46 CMOS inverters with shorted outputs.

Y=A
_

A

Output
protection

diode

+VDD

Figure 5.47 CMOS inverter with an open drain output.

5.5.1.11 CMOS with Tristate Outputs

Like tristate TTL, CMOS devices are also available with tristate outputs. The operation of tristate
CMOS devices is similar to that of tristate TTL. That is, when the device is enabled it performs its
intended logic function, and when it is disabled its output goes to a high-impedance state. In the high-
impedance state, both N-channel and P-channel MOSFETs are driven to an OFF-state. Figure 5.48
shows the internal schematic of a tristate buffer with active LOW ENABLE input. The circuit shown
is that of one of the buffers in CMOS hex buffer type CD4503B. The outputs of tristate CMOS devices
can be connected together in a bus arrangement, like tristate TTL devices with the same condition that
only one device is enabled at a time.

5.5.1.12 Floating or Unused Inputs

Unused inputs of CMOS devices should never be left floating or unconnected. A floating input is highly
susceptible to picking up noise and accumulating static charge. This can often lead to simultaneous

Logic Families 163

Figure 5.48 Tristate buffer in CMOS.

conduction of P-channel and N-channel devices on the chip, which causes increased power dissipation
and overheating. Unused inputs of CMOS gates should either be connected to ground or VDD or shorted
to another input. The same is applicable to the inputs of all those gates that are not in use. For example,
we may be using only two of the four gates available on an IC having four gates. The inputs of the
remaining two gates should be tied to either ground or VDD.

5.5.1.13 Input Protection

Owing to the high input impedance of CMOS devices, they are highly susceptible to static charge
build-up. As a result of this, voltage developed across the input terminals could become sufficiently
high to cause dielectric breakdown of the gate oxide layer. In order to protect the devices from this
static charge build-up and its damaging consequences, the inputs of CMOS devices are protected by
using a suitable resistor–diode network, as shown in Fig. 5.49(a). The protection circuit shown is
typically used in metal-gate MOSFETs such as those used in 4000-series CMOS devices. Diode D2

limits the positive voltage surges to VDD + 0.7 V, while diode D3 clamps the negative voltage surges
to −0.7 V. Resistor R1 limits the static discharge current amplitude and thus prevents any damagingly
large voltage from being directly applied to the input terminals. Diode D1 does not contribute to input
protection. It is a distributed P–N junction present owing to the diffusion process used for fabrication
of resistor R1. The protection diodes remain reverse biased for the normal input voltage range of 0 to
VDD, and therefore do not affect normal operation.

Figure 5.49(b) shows a typical input protection circuit used for silicon-gate MOSFETs used in 74C,
74HC, etc., series CMOS devices. A distributed P–N junction is absent owing to R1 being a polysilicon
resistor. Diodes D1 and D2 do the same job as diodes D2 and D3 in the case of metal-gate devices.
Diode D2 is usually fabricated in the form of a bipolar transistor with its collector and base terminals
shorted.

5.5.1.14 Latch-up Condition

This is an undesired condition that can occur in CMOS devices owing to the existence of parasitic
bipolar transistors (NPN and PNP) embedded in the substrate. While N-channel MOSFETs lead to the

164 Digital Electronics

Figure 5.49 (a) Input protection circuit-metal-gate devices and (b) input protection circuit-silicon-gate devices.

presence of NPN transistors, P-channel MOSFETs are responsible for the existence of PNP transistors.
If we look into the arrangement of different semiconductor regions in the most basic CMOS building
block, that is, the inverter, we will find that these parasitic NPN and PNP transistors find themselves
interconnected in a back-to-back arrangement, with the collector of one transistor connected to the base
of the other, and vice versa. Two such pairs of transistors connected in series exist between VDD and
ground in the case of an inverter, as shown in Fig. 5.50. If for some reason these parasitic elements are
triggered into conduction, on account of inherent positive feedback they get into a latch-up condition
and remain in conduction permanently. This can lead to the flow of large current and subsequently
to destruction of the device. A latch-up condition can be triggered by high voltage spikes and ringing

Logic Families 165

Figure 5.50 CMOS inverter with parasitic elements.

present at the device inputs and outputs. The device can also be prone to latch-up if its maximum
ratings are exceeded. Modern CMOS devices use improved fabrication techniques so as to minimize
factors that can cause this undesired effect. The use of external clamping diodes at inputs and outputs,
proper termination of unused inputs and regulated power supply with a current-limiting feature also
helps in minimizing the chances of occurrence of the latch-up condition and in minimizing its effects
if it occurs.

5.5.2 CMOS Subfamilies

In the following paragraphs, we will briefly describe various subfamilies of CMOS logic, including
subfamilies of the 4000 series and those of TTL pin-compatible 74C series.

5.5.2.1 4000-series

The 4000A-series CMOS ICs, introduced by RCA, were the first to arrive on the scene from the
CMOS logic family. The 4000A CMOS subfamily is obsolete now and has been replaced by 4000B
and 4000UB subfamilies. We will therefore not discuss it in detail. The 4000B series is a high-voltage
version of the 4000A series, and also all the outputs in this series are buffered. The 4000UB series
is also a high-voltage version of the 4000A series, but here the outputs are not buffered. A buffered
CMOS device is one that has constant output impedance irrespective of the logic status of the inputs.
If we recall the internal schematics of the basic CMOS logic gates described in the previous pages, we
will see that, with the exception of the inverter, the output impedance of other gates depends upon the

166 Digital Electronics

logic status of the inputs. This variation in output impedance occurs owing to the varying combination
of MOSFETs that conduct for a given input combination. All buffered devices are designated by
the suffix ‘B’ and referred to as the 4000B series. The 4000-series devices that meet 4000B series
specifications except for the VIL and VIH specifications and that the outputs are not buffered are called
unbuffered devices and are said to belong to the 4000UB series.

Figures 5.51 and 5.52 show a comparison between the internal schematics of a buffered two-input
NOR (Fig. 5.51) and an unbuffered two-input NOR (Fig. 5.52). A buffered gate has been implemented
by using inverters at the inputs to a two-input NAND whose output feeds another inverter. This
is the typical arrangement followed by various manufacturers, as the inverters at the input enhance
noise immunity. Another possible arrangement would be a two-input NOR whose output feeds two
series-connected inverters.

Variation in the output impedance of unbuffered gates is larger for gates with a larger number of
inputs. For example, unbuffered gates have an output impedance of 200–400 � in the case of two-input
gates, 133–400 � for three-input gates and 100–400 � for gates with four inputs. Buffered gates have
an output impedance of 400 �. Since they have the same maximum output impedance, their minimum
IOL and IOH specifications are the same.

Characteristic features of 4000B and 4000UB CMOS devices are as follows: VIH (buffered
devices) = 3.5 V (for VDD = 5 V), 7.0 V (for VDD= 10 V) and 11.0 V (for VDD = 15 V); VIH (unbuffered
devices) = 4.0 V (for VDD= 5 V), 8.0 V (for VDD = 10 V) and 12.5 V (for VDD = 15 V); IIH = 1.0 �A;
IIL = 1.0 �A; IOH = 0.2 mA (for VDD = 5 V), 0.5 mA (for VDD = 10 V) and 1.4 mA (for VDD = 15 V);
IOL = 0.52 mA (for VDD = 5 V), 1.3 mA (for VDD= 10 V) and 3.6 mA (for VDD = 15 V); VIL (buffered
devices) = 1.5 V (for VDD = 5 V), 3.0 V (for VDD= 10 V) and 4.0 V (for VDD= 15 V); VIL (unbuffered
devices) = 1.0 V (for VDD = 5 V), 2.0 V (for VDD= 10 V) and 2.5 V (for VDD = 15 V); VOH = 4.95 V

Figure 5.51 Buffered two-input NOR.

Logic Families 167

Figure 5.52 Unbuffered two-input NOR.

(for VDD = 5 V), 9.95 V (for VDD =10 V) and 14.95 V (for VDD = 15 V); VOL = 0.05 V; VDD = 3–
15 V; propagation delay (buffered devices) = 150 ns (for VDD = 5 V), 65 ns (for VDD = 10 V) and
50 ns (for VDD = 15 V); propagation delay (unbuffered devices) = 60 ns (for VDD = 5 V), 30 ns (for
VDD = 10 V) and 25 ns (for VDD = 15 V); noise margin (buffered devices) = 1.0 V (for VDD = 5 V),
2.0 V (for VDD = 10 V) and 2.5 V (for VDD= 15 V); noise margin (unbuffered devices) = 0.5 V (for
VDD = 5 V), 1.0 V (for VDD = 10 V) and 1.5 V (for VDD= 15 V); output transition time (for VDD = 5 V and
CL = 50 pF) = 100 ns (buffered devices) and 50–100 ns (for unbuffered devices); power dissipation per
gate (for f = 100 kHz) = 0.1 mW; speed–power product (for f = 100 kHz) = 5 pJ; maximum flip-flop
toggle rate = 12 MHz.

5.5.2.2 74C Series

The 74C CMOS subfamily offers pin-to-pin replacement of the 74-series TTL logic functions. For
instance, if 7400 is a quad two-input NAND in standard TTL, then 74C00 is a quad two-input NAND
with the same pin connections in CMOS. The characteristic parameters of the 74C series CMOS are
more or less the same as those of 4000-series devices.

5.5.2.3 74HC/HCT Series

The 74HC/HCT series is the high-speed CMOS version of the 74C series logic functions. This is
achieved using silicon-gate CMOS technology rather than the metal-gate CMOS technology used in
earlier 4000-series CMOS subfamilies. The 74HCT series is only a process variation of the 74HC series.
The 74HC/HCT series devices have an order of magnitude higher switching speed and also a much
higher output drive capability than the 74C series devices. This series also offers pin-to-pin replacement
of 74-series TTL logic functions. In addition, the 74HCT series devices have TTL-compatible inputs.

168 Digital Electronics

5.5.2.4 74AC/ACT Series

The 74AC series is presently the fastest CMOS logic family. This logic family has the best
combination of high speed, low power consumption and high output drive capability. Again, 74ACT
is only a process variation of 74AC. In addition, 74ACT series devices have TTL-compatible
inputs.

The characteristic parameters of the 74C/74HC/74HCT/74AC/74ACT series CMOS are summarized
as follows (for VDD= 5 V): VIH (min.) = 3.5 V (74C), 3.5 V (74HC and 74AC) and 2.0 V (74HCT and
74ACT); VOH (min.) = 4.5 V (74C) and 4.9 V (74HC, 74HCT, 74AC and 74ACT); VIL(max.) = 1.5 V
(74C), 1.0 V (74HC), 0.8 V (74HCT), 1.5 V (74AC) and 0.8 V (74ACT); VOL (max.) = 0.5 V (74C) and
0.1 V (74HC, 74HCT, 74AC and 74ACT); IIH(max.) = 1 �A; IIL (max.) = 1 �A; IOH (max.) = 0.4 mA
(74C), 4.0 mA (74HC and 74HCT) and 24 mA (74AC and 74ACT); IOL (max.) = 0.4 mA (74C), 4.0 mA
(74HC and 74HCT) and 24 mA (74AC and 74ACT); VNH = 1.4 V (74C, 74HC and 74AC) and 2.9 V
(74HCT and 74ACT); VNL = 1.4 V (74C), 0.9 V (74HC), 0.7 V (74HCT and 74ACT) and 1.4 V (74AC);
propagation delay = 50 ns (74C), 8 ns (74HC and 74HCT) and 4.7 ns (74AC and 74ACT); power
dissipation per gate (for f = 100 kHz) = 0.1 mW (74C), 0.17 mW (74HC and 74HCT) and 0.08 mW
(74AC and 74ACT); speed–power product (for f = 100 kHz) = 5 pJ (74C), 1.4 pJ (74HC and 74HCT)
and 0.37 pJ (74AC and 74ACT); maximum flip-flop toggle rate = 12 MHz (74C), 40 MHz (74HC and
74HCT) and 100 MHz (74AC and 74ACT).

Example 5.7

Draw the internal schematic of: (a) a two-wide, four-input AND-OR-INVERT logic function in CMOS
and (b) a two-wide, four-input OR-AND-INVERT logic function in CMOS.

Solution
(a) Let us assume that A, B, C, D, E, F , G and H are the logic variables. The output Y of this logic

function can then be expressed by the equation

Y = A�B�C�D+E�F�G�H� (5.5)

Following the principles explained earlier in the text, the internal schematic is shown in Fig. 5.53(a).
Series connection of N-channel MOSFETs on the left simulates ANDing of A, B, C and D,
whereas series connection of N-channel MOSFETs on the right simulates ANDing of E, F , G
and H . Parallel connection of two branches produces ORing of the ANDed outputs. Since the
P-channel MOSFET arrangement is the complement of the N-channel MOSFET arrangement, the
final output is what is given by Equation (5.5).

(b) The output Y of this logic function can be expressed by the equation

Y = �A+B+C +D���E +F +G+H� (5.6)

Figure 5.53(b) shows the internal schematic, which can be explained on similar lines.

Example 5.8

Determine the logic function performed by the CMOS digital circuit of Fig. 5.54.

Logic Families 169

A

B

C

D

E

F

G

H

Y

Y =(ABCD+EFGH)
——————

(a)

+VDD

D

C

B

A

H

G

F

E

Y=(A+B+C+D) (E+F+G+H)

Y

E

A B C D

F G H

(b)

+VDD

Figure 5.53 Example 5.7.

170 Digital Electronics

Y=(AB+AB)

+VDD

B
–

B

B
–

A
B

A
–

A
–

A

+VDD

A

B

Figure 5.54 Example 5.8.

Solution
The given circuit can be divided into two stages. The first stage comprises two inverters that produce
A and B. The second stage is a two-wide, two-input AND-OR-INVERT circuit. Inputs to the first
AND are A and B, and inputs to the second AND are A and B. The final output is therefore given by
Y =�A�B+A�B�, which is an EX-NOR function.

5.6 BiCMOS Logic
The BiCMOS logic family integrates bipolar and CMOS devices on a single chip with the objective
of deriving the advantages individually present in bipolar and CMOS logic families. While bipolar
logic families such as TTL and ECL have the advantages of faster switching speed and larger output
drive current capability, CMOS logic scores over bipolar counterparts when it comes to lower power
dissipation, higher noise margin and larger packing density. BiCMOS logic attempts to get the best
of both worlds. Two major categories of BiCMOS logic devices have emerged over the years since
its introduction in 1985. In one type of device, moderate-speed bipolar circuits are combined with
high-performance CMOS circuits. Here, CMOS circuitry continues to provide low power dissipation
and larger packing density. Selective use of bipolar circuits gives improved performance. In the other

Logic Families 171

category, the bipolar component is optimized to produce high-performance circuitry. In the following
paragraphs, we will briefly describe the basic BiCMOS inverter and NAND circuits.

5.6.1 BiCMOS Inverter

Figure 5.55 shows the internal schematic of a basic BiCMOS inverter. When the input is LOW,
N-channel MOSFETs Q2 and Q3 are OFF. P-channel MOSFET Q1 and N-channel MOSFET Q4 are
ON. This leads transistors Q5 and Q6 to be in the ON and OFF states respectively. Transistor Q6 is
OFF because it does not get the required forward-biased base-emitter voltage owing to a conducting
Q4. Conducting Q5 drives the output to a HIGH state, sourcing a large drive current to the load. The
HIGH-state output voltage is given by the equation

VOH = VDD −VBE�Q5� (5.7)

When the input is driven to a HIGH state, Q2 and Q3 turn ON. Initially, Q4 is also ON and the output
discharges through Q3 and Q4. When Q4 turns OFF owing to its gate-source voltage falling below
the required threshold voltage, the output continues to discharge until the output voltage equals the
forward-biased base-emitter voltage drop of Q6 in the active region. The LOW-state output voltage is
given by the equation

VOL = VBE�Q6 in active mode� = 0�7V (5.8)

5.6.2 BiCMOS NAND

Figure 5.56 shows the internal schematic of a two-input NAND in BiCMOS logic. The operation of
this circuit can be explained on similar lines to the case of an inverter. Note that MOSFETs Q1–Q4

Q1

+VDD

A

Q5

Q6

Y=A

Q3

Q4

Q2

Figure 5.55 BiCMOS inverter.

172 Digital Electronics

Q1

Q3

Q4

Q5

Q6

Q2

Q9

Q8

+VDD

A

B

Q7

Y=A.B

Figure 5.56 BiCMOS two-input NAND.

constitute a two-input NAND in CMOS. Also note the similarity of this circuit to the one shown in
Fig. 5.55. The CMOS inverter stage of Fig. 5.55 is replaced by CMOS NAND in Fig. 5.56. N-channel
MOSFET Q3 in Fig. 5.55 is replaced by a series connection of N-channel MOSFETs Q5 and Q6 to
accommodate the two inputs. The HIGH-state and LOW-state output voltage levels of this circuit are
given by the equations

VOH = �VDD −0�7� (5.9)

VOL = 0�7 (5.10)

5.7 NMOS and PMOS Logic
Logic families discussed so far are the ones that are commonly used for implementing discrete logic
functions such as logic gates, flip-flops, counters, multiplexers, demultiplexers, etc., in relatively less
complex digital ICs belonging to the small-scale integration (SSI) and medium-scale integration (MSI)
level of inner circuit complexities. The TTL, the CMOS and the ECL logic families are not suitable
for implementing digital ICs that have a large-scale integration (LSI) level of inner circuit complexity
and above. The competitors for LSI-class digital ICs are the PMOS, the NMOS and the integrated
injection logic (I2L). The first two are briefly discussed in this section, and the third is discussed in
Section 5.8.

Logic Families 173

5.7.1 PMOS Logic

The PMOS logic family uses P-channel MOSFETS. Figure 5.57(a) shows an inverter circuit using
PMOS logic. MOSFET Q1 acts as an active load for the MOSFET switch Q2. For the circuit shown,
GND and −VDD respectively represent a logic ‘1’ and a logic ‘0’ for a positive logic system. When
the input is grounded (i.e. logic ‘1’), Q2 remains in cut-off and −VDD appears at the output through

-VDD

A
Q2

Q1
Y = A

–VDD

Q2

Q3 Y = (A+B)
——

A

B

(a)

(b)

Q1

Figure 5.57 (a) PMOS logic inverter and (b) PMOS logic two-input NOR.

174 Digital Electronics

the conducting Q1. When the input is at −VDD or near −VDD, Q2 conducts and the output goes to
near-zero potential (i.e. logic ‘1’).

Figure 5.57(b) shows a PMOS logic based two-input NOR gate. In the logic arrangement of
Fig. 5.57(b), the output goes to logic ‘1’ state (i.e. ground potential) only when both Q1 and Q2 are
conducting. This is possible only when both the inputs are in logic ‘0’ state. For all other possible
input combinations, the output is in logic ‘0’ state, because, with either Q1 or Q2 nonconducting, the
output is nearly −VDD through the conducting Q3. The circuit of Fig. 5.57(b) thus behaves like a
two-input NOR gate in positive logic. It may be mentioned here that the MOSFET being used as load
[Q1 in Fig. 5.57(a) and Q3 in Fig. 5.57(b)] is designed so as to have an ON-resistance that is much
greater than the total ON-resistance of the MOSFETs being used as switches [Q2 in Fig. 5.57(a) and
Q1 and Q2 in Fig. 5.57(b)].

5.7.2 NMOS Logic

The NMOS logic family uses N-channel MOSFETS. N-channel MOS devices require a smaller chip
area per transistor compared with P-channel devices, with the result that NMOS logic offers a higher
density. Also, owing to the greater mobility of the charge carriers in N-channel devices, the NMOS
logic family offers higher speed too. It is for this reason that most of the MOS memory devices and
microprocessors employ NMOS logic or some variation of it such as VMOS, DMOS and HMOS.
VMOS, DMOS and HMOS are only structural variations of NMOS, aimed at further reducing the
propagation delay. Figures 5.58(a), (b) and (c) respectively show an inverter, a two-input NOR and a
two-input NAND using NMOS logic. The logic circuits are self-explanatory.

5.8 Integrated Injection Logic (I2L) Family
Integrated injection logic (I2L), also known as current injection logic, is well suited to implementing
LSI and VLSI digital functions and is a close competitor to the NMOS logic family. Figure 5.59
shows the basic I2L family building block, which is a multicollector bipolar transistor with a current
source driving its base. Transistors Q3 and Q4 constitute current sources. The magnitude of current
depends upon externally connected R and applied +V . This current is also known as the injection
current, which gives it its name of injection logic. If input A is HIGH, the injection current through
Q3 flows through the base-emitter junction of Q1. Transistor Q1 saturates and its collector drops to
a low voltage, typically 50–100 mV. When A is LOW, the injection current is swept away from the
base-emitter junction of Q1. Transistor Q1 becomes open and the injection current through Q4 saturates
Q2, with the result that the Q1 collector potential equals the base-emitter saturation voltage of Q2,
typically 0.7 V.

The speed of I2L family devices is a function of the injection current I and improves with increase in
current, as a higher current allows a faster charging of capacitive loads present at bases of transistors.
The programmable injection current feature is made use of in the I2L family of digital ICs to choose
the desired speed depending upon intended application. The logic ‘0’ level is VCE(sat.) of the driving
transistor (Q1 in the present case), and the logic ‘1’ level is VBE(sat.) of the driven transistor (Q2

in the present case). Typically, the logic ‘0’ and logic ‘1’ levels are 0.1 and 0.7 V respectively. The
speed–power product of the I2L family is typically under 1 pJ.

Multiple collectors of different transistors can be connected together to form wired logic. Figure 5.60
shows one such arrangement, depicting the generation of OR and NOR outputs of two logic variables
A and B.

Logic Families 175

Q1

Q2

+VDD

Y=A
–

A

(a)

Q3

Q1

+VDD

Y=(A+B)
——

A

(b)

B

Q2

(c)

Q3

+VDD

Q2

Q1

Y=A.B

B

A

Figure 5.58 (a) NMOS logic circuit inverter, (b) NMOS logic two-input NOR and (c) NMOS logic two-input
NAND.

176 Digital Electronics

R+V

Q3 Q4

Q1
Q2

A

A

Figure 5.59 Integrated injection logic (I2L).

B

(A+B)

+V

III

Q2 Q3

(A+B)

Q1

A

Figure 5.60 Wired logic in I2L.

5.9 Comparison of Different Logic Families
Table 5.2 gives a comparison of various performance characteristics of important logic families for
quick reference. The data given in the case of CMOS families are for VDD = 5 V. In the case of ECL
families, the data are for VEE= −5.2 V. The values of various parameters given in the table should be
used only for rough comparison. It is recommended that designers refer to the relevant data books for
detailed information on these parameters along with the conditions under which those values are valid.

5.10 Guidelines to Using TTL Devices
The following guidelines should be adhered to while using TTL family devices:

1. Replacing a TTL IC of one TTL subfamily with another belonging to another subfamily (the
type numbers remaining the same) should not be done blindly. The designer should ensure that

Logic Families 177

Table 5.2 Comparison of various performance characteristics of important logic families.

Logic family Supply voltage
(V)

Typical
propagation
delay (ns)

Worst-case
noise
margin (V)

Speed–power
product (pJ)

Maximum
flip-flop
toggle
frequency
(MHz)

TTL Standard 4.5 to 5.5 17 0�4 100 35
L 4.5 to 5.5 60 0�3 33 3
H 4.5 to 5.5 10 0�4 132 50
S 4.5 to 5.5 5 0�3 57 125
LS 4.5 to 5.5 15 0�3 18 45
ALS 4.5 to 5.5 10 0�3 4�8 70
AS 4.5 to 5.5 4�5 0�3 13�6 200
F 4.5 to 5.5 6 0�3 10 125

CMOS 4000 3 to 15 150 1�0 5 12
74C 3 to 13 50 1�4 5 12
74HC 2 to –6 8 0�9 1�4 40
74HCT 4.5 to 5.5 8 1�4 1�4 40
74AC 2 to 6 4�7 0�7 0�37 100
74ACT 4.5 to 5.5 4�7 0�72�9 0�37 100

ECL MECL III –5.1 to –5.3 1 0�2 60 500
MECL 10K –4.68 to –5.72 2�5 0�2 50 200
MECL 10H –4.94 to –5.46 1 0�15 25 250
ECLINPSTM –4.2 to –5.5 0�5 0�15 10 1000
ECLINPS
LITETM

–4.2 to –5.5 0�2 0�15 10 2800

the replacement device is compatible with the existing circuit with respect to parameters such
as output drive capability, input loading, speed and so on. As an illustration, let us assume that
we are using 74S00 (quad two-input NAND), the output of which drives 20 different NAND
inputs implemented using 74S00, as shown in Fig. 5.61. This circuit works well as the Schottky
TTL family has a fan-out of 20 with an output HIGH drive capability of 1 mA and an input
HIGH current requirement of 50 �A. If we try replacing the 74S00 driver with a 74LS00 driver,
the circuit fails to work as 74LS00 NAND has an output HIGH drive capability of 0.4 mA
only. It cannot feed 20 NAND input loads implemented using 74S00. By doing so, we will be
exceeding the HIGH-state fan-out capability of the device. Also, 74LS00 has an output current-
sinking specification of 8 mA, whereas the input current-sinking requirement of 74S00 is 2 mA.
This implies that 74LS00 could reliably feed only four inputs of 74S00 in the LOW state. By feeding
as many as 20 inputs, we will be exceeding the LOW-state fan-out capability of 74LS00 by a large
margin.

2. None of the inputs and outputs of TTL ICs should be driven by more than 0.5 V below ground
reference.

3. Proper grounding techniques should be used while designing the PCB layout. If the grounding is
improper, the ground loop currents give rise to voltage drops, with the result that different ICs will
not be at the same reference. This effectively reduces the noise immunity.

178 Digital Electronics

74S00

74S00

74S00
20

2

1
74S00

Figure 5.61 Output of one TTL subfamily driving another.

4. The power supply rail must always be properly decoupled with appropriate capacitors so that there
is no drop in VCC rail as the inputs and outputs make logic transitions. Usually, two capacitors
are used at the VCC point of each IC. A 0.1 �F ceramic disc should be used to take care of
high-frequency noise, while typically a 10–20 �F electrolytic is good enough to eliminate any low-
frequency variations resulting from variations in ICC current drawn from VCC, depending upon logic
states of inputs and outputs. To be effective, the decoupling capacitors should be wired as close as
feasible to the VCC pin of the IC.

5. The unused inputs should not be left floating. All unused inputs should be tied to logic HIGH in
the case of AND and NAND gates, and to ground in the case of OR and NOR gates. An alternative
is to connect the unused input to one of the used inputs.

6. While using open collector devices, resistive pull-up should be used. The value of pull-up resistance
should be determined from the following equations:

RX = �VCC�max��−VOL	/�IOL −N2�LOW�×1�6	 (5.11)

RX�max�� = �VCC�min��−VOH	/�N1 × IOH +N2�HIGH�×40	 (5.12)

where RX is the external pull-up resistor; RX(max.) is the maximum value of the external pull-up
resistor; N1 is the number of WIRED-OR outputs; N2 is the number of unit input loads being
driven; IOH is the output HIGH leakage current (in mA); IOL is the LOW-level output current of
the driving element (in mA); VOL is the LOW-level output voltage; and VOH is the HIGH-level
output voltage. One TTL unit load in the HIGH state = 40 mA, and one TTL unit load in the
LOW-state = 1.6 mA.

Logic Families 179

5.11 Guidelines to Handling and Using CMOS Devices
The following guidelines should be adhered to while using CMOS family devices:

1. Proper handling of CMOS ICs before they are used and also after they have been mounted on the PC
boards is very important as these ICs are highly prone to damage by electrostatic discharge. Although
all CMOS ICs have inbuilt protection networks to guard them against electrostatic discharge,
precautions should be taken to avoid such an eventuality. While handling unmounted chips, potential
differences should be avoided. It is good practice to cover the chips with a conductive foil. Once
the chips have been mounted on the PC board, it is good practice again to put conductive clips or
conductive tape on the PC board terminals. Remember that PC board is nothing but an extension
of the leads of the ICs mounted on it unless it is integrated with the overall system and proper
voltages are present.

2. All unused inputs must always be connected to either VSS or VDD depending upon the logic involved.
A floating input can result in a faulty logic operation. In the case of high-current device types
such as buffers, it can also lead to the maximum power dissipation of the chip being exceeded,
thus causing device damage. A resistor (typically 220 k� to 1 M�� should preferably be connected
between input and the VSS or VDD if there is a possibility of device terminals becoming temporarily
unconnected or open.

3. The recommended operating supply voltage ranges are 3–12 V for A-series (3–15 V being the
maximum rating) and 3–15 V for B-series and UB-series (3–18 V being the maximum). For CMOS
IC application circuits that are operated in a linear mode over a portion of the voltage range, such
as RC or crystal oscillators, a minimum VDD of 4 V is recommended.

4. Input signals should be maintained within the power supply voltage range VSS < Vi < VDD (−0.5 V
< Vi < VDD + 0.5 V being the absolute maximum). If the input signal exceeds the recommended
input signal range, the input current should be limited to ±100 mA.

5. CMOS ICs like active pull-up TTL ICs cannot be connected in WIRE-OR configuration. Paralleling
of inputs and outputs of gates is also recommended for ICs in the same package only.

6. The majority of CMOS clocked devices have maximum rise and fall time ratings of normally 5–15 �s.
The device may not function properly with larger rise and fall times. The restriction, however, does not
apply to those CMOS ICs that have inbuilt Schmitt trigger shaping in the clock circuit.

5.12 Interfacing with Different Logic Families
CMOS and TTL are the two most widely used logic families. Although ICs belonging to the same
logic family have no special interface requirements, that is, the output of one can directly feed the input
of the other, the same is not true if we have to interconnect digital ICs belonging to different logic
families. Incompatibility of ICs belonging to different families mainly arises from different voltage
levels and current requirements associated with LOW and HIGH logic states at the inputs and outputs.
In this section, we will discuss simple interface techniques that can be used for CMOS-to-TTL and
TTL-to-CMOS interconnections. Interface guidelines for CMOS–ECL, ECL–CMOS, TTL–ECL and
ECL–TTL are also given.

5.12.1 CMOS-to-TTL Interface

The first possible type of CMOS-to-TTL interface is the one where both ICs are operated from a
common supply. We have read in earlier sections that the TTL family has a recommended supply

180 Digital Electronics

voltage of 5 V, whereas the CMOS family devices can operate over a wide supply voltage range of
3–18 V. In the present case, both ICs would operate from 5 V. As far as the voltage levels in the two
logic states are concerned, the two have become compatible. The CMOS output has a VOH(min.) of
4.95 V (for VCC = 5 V) and a VOL(max.) of 0.05 V, which is compatible with VIH(min.) and VIL(max.)
requirements of approximately 2 and 0.8 V respectively for TTL family devices. In fact, in a CMOS-to-
TTL interface, with the two devices operating on the same VCC, voltage level compatibility is always
there. It is the current level compatibility that needs attention. That is, in the LOW state, the output
current-sinking capability of the CMOS IC in question must at least equal the input current-sinking
requirement of the TTL IC being driven. Similarly, in the HIGH state, the HIGH output current drive
capability of the CMOS IC must equal or exceed the HIGH-level input current requirement of TTL
IC. For a proper interface, both the above conditions must be met. As a rule of thumb, a CMOS IC
belonging to the 4000B family (the most widely used CMOS family) can feed one LS TTL or two
low-power TTL unit loads. When a CMOS IC needs to drive a standard TTL or a Schottky TTL
device, a CMOS buffer (4049B or 4050B) is used. 4049B and 4050B are hex buffers of inverting
and noninverting types respectively, with each buffer capable of driving two standard TTL loads.
Figure 5.62(a) shows a CMOS-to-TTL interface with both devices operating from 5 V supply and the
CMOS IC driving a low-power TTL or a low-power Schottky TTL device. Figure 5.62(b) shows a
CMOS-to-TTL interface where the TTL device in use is either a standard TTL or a Schottky TTL.
The CMOS-to-TTL interface when the two are operating on different power supply voltages can be
achieved in several ways. One such scheme is shown in Fig. 5.62(c). In this case, there is both a
voltage level as well as a current level compatibility problem.

5.12.2 TTL-to-CMOS Interface

In the TTL-to-CMOS interface, current compatibility is always there. The voltage level compatibility in
the two states is a problem. VOH (min.) of TTL devices is too low as regards the VIH (min.) requirement
of CMOS devices. When the two devices are operating on the same power supply voltage, that is, 5 V,
a pull-up resistor of 10 k� achieves compatibility [Fig. 5.63(a)]. The pull-up resistor causes the TTL
output to rise to about 5 V when HIGH. When the two are operating on different power supplies, one
of the simplest interface techniques is to use a transistor (as a switch) in-between the two, as shown in
Fig. 5.63(b). Another technique is to use an open collector type TTL buffer [Fig. 5.63(c)].

5.12.3 TTL-to-ECL and ECL-to-TTL Interfaces

TTL-to-ECL and ECL-to-TTL interface connections are not as straightforward as TTL-to-CMOS and
CMOS-to-TTL connections owing to widely different power supply requirements for the two types and
also because ECL devices have differential inputs and differential outputs. Nevertheless, special chips
are available that can take care of all these aspects. These are known as level translators. MC10124
is one such quad TTL-to-ECL level translator. That is, there are four independent single-input and
complementary-output translators inside the chip. Figure 5.64(a) shows a TTL-to-ECL interface using
MC10124.

MC10125 is a level translator for ECL-to-TTL interfaces; it has differential inputs and a single-ended
output. Figure 5.64(b) shows a typical interface schematic using MC10125. Note that in the interface
schematics of Figs 5.64(a) and (b), only one of the available four translators has been used.

Logic Families 181

LS–TTL
or
LP–TTL

CMOS

+5V

(a)

CMOS
Buffer

CMOS

+5V

(c)

TTL

O/P

+15V

I/P

O/PI/P

Standard TTL
or S–TTL

CMOS

+5V

CMOS
Buffer

(b)

O/PI/P

Figure 5.62 CMOS-to-TTL interface.

182 Digital Electronics

TTL CMOS

+5V

O/PI/P

(a)

+15V

O/P

+5V

CMOS1KTTL

10K

(b)

I/P

I/P

+15V

CMOS

O/P

TTL
Buffer

(open collector)

+5V

10K

TTL

(c)

10K

Figure 5.63 TTL-to-CMOS interface.

Logic Families 183

ECL – to –TTL
Translator
(MC10125)

TTL

(b)

O/PI/P

TTL – to –ECL
Translator
(MC10124)

TTL ECL

(a)

O/PI/P

ECL

Figure 5.64 TTL-to-ECL and ECL-to-TTL interfaces.

5.12.4 CMOS-to-ECL and ECL-to-CMOS Interfaces

CMOS-to-ECL and ECL-to-CMOS interfaces are similar to the TTL-to-ECL and ECL-to-TTL
interfaces described. Again, dedicated level translators are available. MC10352, for instance, is a quad
CMOS-to-ECL level translator chip. A CMOS-to-ECL interface is also possible by having firstly
a CMOS-to-TTL interface followed by a TTL-to-ECL interface using MC10124 or a similar chip.
Figure 5.65(a) shows the arrangement. Similarly, an ECL-to-CMOS interface is possible by having
an ECL-to-TTL interface using MC10125 or a similar chip followed by a TTL-to-CMOS interface.
Figure 5.65(b) shows a typical interface schematic.

5.13 Classification of Digital ICs
We are all familiar with terms like SSI, MSI, LSI, VLSI and ULSI being used with reference to digital
integrated circuits. These terms refer to groups in which digital ICs are divided on the basis of the
complexity of the circuitry integrated on the chip. It is common practice to consider the complexity of

184 Digital Electronics

CMOSI/P
CMOS–

TTL
Interface

TTL TTL–ECL
Interface

(MC10124)

ECL–TTL
Interface

(MC10125)

ECL O/P

(a)

ECLI/P TTL CMOS O/P

(b)

TTL–
CMOS

Interface

Figure 5.65 CMOS-to-ECL and ECL-to-CMOS interfaces.

a logic gate as a reference for defining the complexities of the other digital IC functions. A broadly
accepted definition of different groups of ICs mentioned above is as follows.

A small-scale integration (SSI) chip is one that contains circuitry equivalent in complexity to less
than or equal to 10 logic gates. This category of digital ICs includes basic logic gates and flip-flops.
A medium-scale integration (MSI) chip is one that contains circuitry equivalent in complexity to
10–100 gates. This category of digital ICs includes multiplexers, demultiplexers, counters, registers,
small memories, arithmetic circuits and others. A large-scale integration (LSI) chip is one that contains
circuitry equivalent in complexity to 100–10 000 gates. A very-large-scale integration (VLSI) chip
contains circuitry equivalent in complexity to 10 000–100 000 gates. Large-sized memories and
microprocessors come in the category of LSI and VLSI chips. An ultralarge-scale integration (ULSI)
chip contains circuitry equivalent in complexity to more than 100 000 gates. Very large memories,
larger microprocessors and larger single-chip computers come into this category.

5.14 Application-Relevant Information
Table 5.3 lists the commonly used type numbers of level translator ICs, along with the functional
description. The pin connection diagrams and functional tables for TTL-to-ECL level translator IC type
MC10124 and ECL-to-TTL level translator IC type MC10125 are given in the companion website.

Table 5.3 Functional index of level translators

Type number Function

10124 Quad TTL-to-ECL translator
10125 Quad ECL-to-TTL translator
10177 Triple ECL-to-CMOS translator
10352 Quad CMOS-to-ECL translator

Logic Families 185

Review Questions
1. What do you understand by the term logic family? What is the significance of the logic family

with reference to digital integrated circuits (ICs)?
2. Briefly describe propagation delay, power dissipation, speed–power product, fan-out and noise

margin parameters, with particular reference to their significance as regards the suitability of the
logic family for a given application.

3. Compare the standard TTL, low-power Schottky TTL and Schottky TTL on the basis of speed,
power dissipation and fan-out capability.

4. What is the totem-pole output stage? What are its advantages?
5. What are the basic differences between buffered and unbuffered CMOS devices? How is a buffered

NAND usually implemented in 4000B-series CMOS logic?
6. With the help of relevant circuit schematics, briefly describe the operation of CMOS NAND and

NOR gates.
7. Compare standard TTL and 4000B CMOS families on the basis of speed and power dissipation

parameters.
8. Why is ECL called nonsaturating logic? What is the main advantage accruing from this? With the

help of a relevant circuit schematic, briefly describe the operation of ECL OR/NOR logic.
9. What is the main criterion for the suitability of a logic family for use in fabricating LSI and VLSI

logic functions? Name any two popular candidates and compare their features.
10. Why is it not recommended to leave unused logic inputs floating? What should we do to such

inputs in the case of TTL and CMOS logic gates?
11. What special precautions should we observe in handling and using CMOS ICs?
12. With the help of suitable schematics, briefly describe how you would achieve TTL-to-CMOS and

CMOS-to-TTL interfaces?
13. What is Bi-CMOS logic? What are its advantages?
14. What in a logic family decides the fan-out, speed of operation, noise immunity and power

dissipation?

Problems
1. The data sheet of a quad two-input AND gate (type 74S08) specifies the propagation delay and

power supply parameters as VCC = 5.0 V (typical), ICCH (for all four gates) = 18 mA, ICCL (for all four
gates) = 32 mA, tpLH= 4.5 ns and tpHL = 5.0 ns. Determine the speed–power product specification.

148.4 pJ

2. How many inputs of a low-power Schottky TTL NAND can be reliably driven from a single output
of a Schottky TTL NAND, given the following relevant specifications for the devices of two TTL
subfamilies:
Schottky TTL: IOH = 1.0 mA; IIH= 0.05 mA; IOL = 20.0 mA; IIL = 2.0 mA
Low-power Schottky TTL: IOH = 0.4 mA; IIH= 0.02 mA; IOL = 8.0 mA; IIL = 0.4 mA

50

3. Refer to the logic diagram in Fig. 5.66. Determine the current being sourced by the NAND gate
when its output is HIGH and also the current sunk by it when its output is LOW, given that
IIH (AND gate) = 0.02 mA, IIL (AND gate) = 0.4 mA, IIH (OR gate) = 0.04 mA, IIL (OR gate) =
1.6 mA, IOH(NAND gate) = 1.0 mA, IOL(NAND gate) = 20.0 mA.

HIGH-state current = 0.08 mA; LOW-state current = 2.0 mA

186 Digital Electronics

Figure 5.66 Problem 3.

Y

A

B

+VDD

Figure 5.67 Problem 5.

4. Write the logic expression for the CMOS circuit of Fig. 5.67.
Y = �A�B+A�B�

5. Refer to the data given for 4000B-series CMOS, 74LS-TTL and 74HCT CMOS logic. Determine:

Logic Families 187

(a) the number of 74LS-TTL inputs that can be reliably driven from a single 4000B output;
(b) the number of 74LS-TTL inputs that can be reliably driven from a single 74HCT output.

4000B: IOH = 0.4 mA; IIH = 1.0 �A; IOL= 0.4 �A; IIL = 1.0 �A
74HCT: IOH= 4.0 mA; IIH = 1.0 �A; IOL= 4.0 �A; IIL = 1.0 �A
74LS-TTL: IOH= 0.4 mA; IIH = 20.0 �A; IOL= 8.0 �A; IIL = 0.4 mA

(a) 1; (b) 10

Further Reading
1. Tocci, R. J. (2006) Digital Systems – Principles and Applications, Prentice-Hall Inc., NJ, USA.
2. Demassa, T. A. and Ciccone, Z. (1995) Digital Integrated Circuits, John Wiley & Sons, Inc., New York, USA.
3. Fairchild Semiconductor (August 1973) 74C Family Characteristics, Application Note 90, South Portland, ME,

USA.
4. Wakeman, L. (April 1998) DC Electrical Characteristics of MM74HC High-speed CMOS Logic, Application

Note 313, Fairchild Semiconductor, South Portland, ME, USA.
5. Funk, R. E. (October 2002) Understanding Buffered and Unbuffered CD4XXXB-series Device Characteristics,

Application Report SCHA004, Texas Instruments, USA.
6. Buchanan, J. E. and Buchanan, B. D. (1995) Signal and Power Integrity in Digital Systems: TTL, CMOS, and

BiCMOS, McGraw-Hill Companies, NJ, USA.
7. Lancaster, D. E. (1997) CMOS Cookbook, Butterworth-Heinemann, USA.
8. Elmasry, M. I. (1994) BiCMOS Integrated Circuit Design, IEEE Press, USA.

6
Boolean Algebra and
Simplification Techniques

Boolean algebra is mathematics of logic. It is one of the most basic tools available to the logic designer
and thus can be effectively used for simplification of complex logic expressions. Other useful and
widely used techniques based on Boolean theorems include the use of Karnaugh maps in what is known
as the mapping method of logic simplification and the tabular method given by Quine–McCluskey. In
this chapter, we will have a closer look at the different postulates and theorems of Boolean algebra
and their applications in minimizing Boolean expressions. We will also discuss at length the mapping
and tabular methods of minimizing fairly complex and large logic expressions.

6.1 Introduction to Boolean Algebra
Boolean algebra, quite interestingly, is simpler than ordinary algebra. It is also composed of a set of
symbols and a set of rules to manipulate these symbols. However, this is the only similarity between
the two. The differences are many. These include the following:

1. In ordinary algebra, the letter symbols can take on any number of values including infinity. In
Boolean algebra, they can take on either of two values, that is, 0 and 1.

2. The values assigned to a variable have a numerical significance in ordinary algebra, whereas in its
Boolean counterpart they have a logical significance.

3. While ‘.’ and ‘+’ are respectively the signs of multiplication and addition in ordinary algebra, in
Boolean algebra ‘.’ means an AND operation and ‘+’ means an OR operation. For instance, A+B
in ordinary algebra is read as A plus B, while the same in Boolean algebra is read as A OR B. Basic
logic operations such as AND, OR and NOT have already been discussed at length in Chapter 4.

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

190 Digital Electronics

4. More specifically, Boolean algebra captures the essential properties of both logic operations such
as AND, OR and NOT and set operations such as intersection, union and complement. As an
illustration, the logical assertion that both a statement and its negation cannot be true has a
counterpart in set theory, which says that the intersection of a subset and its complement is a null
(or empty) set.

5. Boolean algebra may also be defined to be a set A supplied with two binary operations of logical
AND (��, logical OR (V), a unary operation of logical NOT (¬� and two elements, namely
logical FALSE (0) and logical TRUE (1). This set is such that, for all elements of this set,
the postulates or axioms relating to the associative, commutative, distributive, absorption and
complementation properties of these elements hold good. These postulates are described in the
following pages.

6.1.1 Variables, Literals and Terms in Boolean Expressions

Variables are the different symbols in a Boolean expression. They may take on the value ‘0’ or ‘1’.
For instance, in expression (6.1), A, B and C are the three variables. In expression (6.2), P, Q, R and
S are the variables:

A+A�B+A�C +A�B�C (6.1)

�P +Q���R+S���P +Q+R� (6.2)

The complement of a variable is not considered as a separate variable. Each occurrence of a variable
or its complement is called a literal. In expressions (6.1) and (6.2) there are eight and seven literals
respectively. A term is the expression formed by literals and operations at one level. Expression (6.1)
has five terms including four AND terms and the OR term that combines the first-level AND terms.

6.1.2 Equivalent and Complement of Boolean Expressions

Two given Boolean expressions are said to be equivalent if one of them equals ‘1’ only when the
other equals ‘1’ and also one equals ‘0’ only when the other equals ‘0’. They are said to be the
complement of each other if one expression equals ‘1’ only when the other equals ‘0’, and vice versa.
The complement of a given Boolean expression is obtained by complementing each literal, changing
all ‘.’ to ‘+’ and all ‘+’ to ‘.’, all 0s to 1s and all 1s to 0s. The examples below give some Boolean
expressions and their complements:

Given Boolean expression

A�B+A�B (6.3)

Corresponding complement

�A+B���A+B� (6.4)

Given Boolean expression

�A+B���A+B� (6.5)

Boolean Algebra and Simplification Techniques 191

Corresponding complement

A�B+A�B (6.6)

When ORed with its complement the Boolean expression yields a ‘1’, and when ANDed with its
complement it yields a ‘0’. The ‘.’ sign is usually omitted in writing Boolean expressions and is
implied merely by writing the literals in juxtaposition. For instance, A.B would normally be written
as AB.

6.1.3 Dual of a Boolean Expression

The dual of a Boolean expression is obtained by replacing all ‘.’ operations with ‘+’ operations, all
‘+’ operations with ‘.’ operations, all 0s with 1s and all 1s with 0s and leaving all literals unchanged.
The examples below give some Boolean expressions and the corresponding dual expressions:

Given Boolean expression

A�B+A�B (6.7)

Corresponding dual

�A+B���A+B� (6.8)

Given Boolean expression

�A+B���A+B� (6.9)

Corresponding dual

A�B+A�B (6.10)

Duals of Boolean expressions are mainly of interest in the study of Boolean postulates and theorems.
Otherwise, there is no general relationship between the values of dual expressions. That is, both of
them may equal ‘1’ or ‘0’. One may even equal ‘1’ while the other equals ‘0’. The fact that the dual
of a given logic equation is also a valid logic equation leads to many more useful laws of Boolean
algebra. The principle of duality has been put to ample use during the discussion on postulates and
theorems of Boolean algebra. The postulates and theorems, to be discussed in the paragraphs to follow,
have been presented in pairs, with one being the dual of the other.

Example 6.1

Find (a) the dual of A�B+B�C +C�D and (b) the complement of ��A�B+C��D+E��F .

Solution
(a) The dual of A�B+B�C +C�D is given by �A+B���B+C���C +D�.
(b) The complement of ��A�B+C��D+E��F is given by ��A+B��C +D��E +F .

192 Digital Electronics

Example 6.2

Simplify �A�B+C�D����A+B���C +D���

Solution
• Let �A�B+C�D� = X.
• Then the given expression reduces to X�X.
• Therefore, �A�B+C�D����A+B���C +D�� = 0.

6.2 Postulates of Boolean Algebra
The following are the important postulates of Boolean algebra:

1. 1�1 = 1� 0+0 = 0.
2. 1�0 = 0�1 = 0� 0+1 = 1+0 = 1.
3. 0�0 = 0� 1+1 = 1.
4. 1 = 0 and 0 = 1.

Many theorems of Boolean algebra are based on these postulates, which can be used to simplify
Boolean expressions. These theorems are discussed in the next section.

6.3 Theorems of Boolean Algebra
The theorems of Boolean algebra can be used to simplify many a complex Boolean expression and
also to transform the given expression into a more useful and meaningful equivalent expression. The
theorems are presented as pairs, with the two theorems in a given pair being the dual of each other.
These theorems can be very easily verified by the method of ‘perfect induction’. According to this
method, the validity of the expression is tested for all possible combinations of values of the variables
involved. Also, since the validity of the theorem is based on its being true for all possible combinations
of values of variables, there is no reason why a variable cannot be replaced with its complement, or
vice versa, without disturbing the validity. Another important point is that, if a given expression is
valid, its dual will also be valid. Therefore, in all the discussion to follow in this section, only one of
the theorems in a given pair will be illustrated with a proof. Proof of the other being its dual is implied.

6.3.1 Theorem 1 (Operations with ‘0’ and ‘1’)

(a) 0�X = 0 and (b) 1+X = 1 (6.11)

where X is not necessarily a single variable – it could be a term or even a large expression.
Theorem 1(a) can be proved by substituting all possible values of X, that is, 0 and 1, into the given

expression and checking whether the LHS equals the RHS:

• For X = 0, LHS = 0.X = 0.0 = 0 = RHS.
• For X = 1, LHS = 0.1 = 0 = RHS.

Thus, 0.X = 0 irrespective of the value of X, and hence the proof.
Theorem 1(b) can be proved in a similar manner. In general, according to theorem 1, 0.(Boolean

expression) = 0 and 1 + (Boolean expression) = 1. For example, 0��A�B + B�C + C�D� = 0 and 1 +
�A�B+B�C +C�D� = 1, where A, B and C are Boolean variables.

Boolean Algebra and Simplification Techniques 193

6.3.2 Theorem 2 (Operations with ‘0’ and ‘1’)

(a) 1�X = X and (b) 0+X = X (6.12)

where X could be a variable, a term or even a large expression. According to this theorem, ANDing a
Boolean expression to ‘1’ or ORing ‘0’ to it makes no difference to the expression:

• For X = 0, LHS = 1.0 = 0 = RHS.
• For X = 1, LHS = 1.1 = 1 = RHS.

Also, 1.(Boolean expression) = Boolean expression and 0 + (Boolean expression) = Boolean expression.
For example,

1� �A+B�C +C�D� = 0+ �A+B�C +C�D� = A+B�C +C�D�

6.3.3 Theorem 3 (Idempotent or Identity Laws)

(a) X�X�X� 	 	 	 .X = X and �b�X +X +X +· · ·+X = X (6.13)

Theorems 3(a) and (b) are known by the name of idempotent laws, also known as identity laws.
Theorem 3(a) is a direct outcome of an AND gate operation, whereas theorem 3(b) represents an OR
gate operation when all the inputs of the gate have been tied together. The scope of idempotent laws
can be expanded further by considering X to be a term or an expression. For example, let us apply
idempotent laws to simplify the following Boolean expression:

�A�B�B+C�C���A�B�B+A�B+C�C� = �A�B+C���A�B+A�B+C�

= �A�B+C���A�B+C� = A�B+C

6.3.4 Theorem 4 (Complementation Law)

(a) X�X = 0 and (b) X +X = 1 (6.14)

According to this theorem, in general, any Boolean expression when ANDed to its complement yields
a ‘0’ and when ORed to its complement yields a ‘1’, irrespective of the complexity of the expression:

• For X = 0, X = 1. Therefore, X�X = 0�1 = 0.
• For X = 1, X = 0. Therefore, X�X = 1�0 = 0.

Hence, theorem 4(a) is proved. Since theorem 4(b) is the dual of theorem 4(a), its proof is implied.
The example below further illustrates the application of complementation laws:

�A+B�C��A+B�C� = 0 and �A+B�C�+ �A+B�C� = 1

194 Digital Electronics

Example 6.3

Simplify the following:

�1+L�M +L�M +L�M����L+M���L�M�+L�M��L+M���

Solution
• We know that (1 + Boolean expression) = 1.
• Also, �L�M� is the complement of �L+M� and �L�M� is the complement of �L+M�.
• Therefore, the given expression reduces to 1.(0 + 0) = 1.0 = 0.

6.3.5 Theorem 5 (Commutative Laws)

(a) X +Y = Y +X and (b) X�Y = Y�X (6.15)

Theorem 5(a) implies that the order in which variables are added or ORed is immaterial. That is, the
result of A OR B is the same as that of B OR A. Theorem 5(b) implies that the order in which variables
are ANDed is also immaterial. The result of A AND B is same as that of B AND A.

6.3.6 Theorem 6 (Associative Laws)
(a) X + �Y +Z� = Y + �Z +X� = Z + �X +Y�

and

(b) X��Y�Z� = Y��Z�X� = Z��X�Y� (6.16)

Theorem 6(a) says that, when three variables are being ORed, it is immaterial whether we do this by
ORing the result of the first and second variables with the third variable or by ORing the first variable
with the result of ORing of the second and third variables or even by ORing the second variable with
the result of ORing of the first and third variables. According to theorem 6(b), when three variables
are being ANDed, it is immaterial whether you do this by ANDing the result of ANDing of the first
and second variables with the third variable or by ANDing the result of ANDing of the second and
third variables with the first variable or even by ANDing the result of ANDing of the third and first
variables with the second variable.

For example,

A�B+ �C�D+E�F� = C�D+ �A�B+E�F� = E�F + �A�B+C�D�

Also

A�B��C�D�E�F� = C�D��A�B�E�F� = E�F��A�B�C�D�

Theorems 6(a) and (b) are further illustrated by the logic diagrams in Figs 6.1(a) and (b).

Boolean Algebra and Simplification Techniques 195

Y

Z
X

X+(Y+Z)
Y
Z

X
Z+(X+Y)

(a)

Y

Z
X

X.(Y.Z)
X

Y
Z

(X.Y).Z

(b)

Figure 6.1 Associative laws.

6.3.7 Theorem 7 (Distributive Laws)

(a) X��Y +Z� = X�Y +X�Z and (b) X +Y�Z = �X +Y���X +Z� (6.17)

Theorem 7(b) is the dual of theorem 7(a). The distribution law implies that a Boolean expression can
always be expanded term by term. Also, in the case of the expression being the sum of two or more
than two terms having a common variable, the common variable can be taken as common as in the case
of ordinary algebra. Table 6.1 gives the proof of theorem 7(a) using the method of perfect induction.
Theorem 7(b) is the dual of theorem 7(a) and therefore its proof is implied. Theorems 7(a) and (b) are
further illustrated by the logic diagrams in Figs 6.2(a) and (b). As an illustration, theorem 7(a) can be
used to simplify A�B+A�B+A�B+A�B as follows:

A�B+A�B+A�B+A�B = A��B+B�+A��B+B� = A�1+A�1 = A+A = 1

Table 6.1 Proof of distributive law.

X Y Z Y+Z XY XZ X(Y+Z) XY+XZ

0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1

196 Digital Electronics

Y

Z
X

X

Y

Z

X.Y+X.Z

(a)

Y

Z
X

X+Y.Z

X

Y

Z

(X+Y).(X+Z)

(b)

X.(Y+Z)

Figure 6.2 Distributive laws.

Theorem 7(b) can be used to simplify �A+B���A+B���A+B���A+B� as follows:

�A+B���A+B���A+B���A+B� = �A+B�B���A+B�B� = �A+0���A+0� = A�A = 0

6.3.8 Theorem 8

(a) X�Y +X�Y = X and (b) �X +Y���X +Y � = X

This is a special case of theorem 7 as

X�Y +X�Y = X��Y +Y � = X�1 = X and �X +Y���X +Y � = X +Y�Y = X +0 = X

This theorem, however, has another very interesting interpretation. Referring to theorem 8(a), there
are two two-variable terms in the LHS expression. One of the variables, Y , is present in all possible
combinations in this expression, while the other variable, X, is a common factor. The expression
then reduces to this common factor. This interpretation can be usefully employed to simplify many a
complex Boolean expression.

As an illustration, let us consider the following Boolean expression:

A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D

Boolean Algebra and Simplification Techniques 197

In the above expression, variables B, C and D are present in all eight possible combinations, and
variable A is the common factor in all eight product terms. With the application of theorem 8(a),
this expression reduces to A. Similarly, with the application of theorem 8(b), �A+B +C���A+B +
C���A+B+C���A+B+C� also reduces to A as the variables B and C are present in all four possible
combinations in sum terms and variable A is the common factor in all the terms.

6.3.9 Theorem 9

(a) �X+Y ��Y = X�Y and �b� X�Y +Y = X +Y (6.18)

�X +Y ��Y = X�Y +Y �Y = X�Y

Theorem 9(b) is the dual of theorem 9(a) and hence stands proved.

6.3.10 Theorem 10 (Absorption Law or Redundancy Law)

(a) X +X�Y = X and �b� X��X +Y� = X (6.19)

The proof of absorption law is straightforward:

X +X�Y = X��1+Y� = X�1 = X

Theorem 10(b) is the dual of theorem 10(a) and hence stands proved.
The crux of this simplification theorem is that, if a smaller term appears in a larger term, then the

larger term is redundant. The following examples further illustrate the underlying concept:

A+A�B+A�B�C +A�B�C +C�B�A = A

and

�A+B+C���A+B���C +B+A� = A+B

6.3.11 Theorem 11

(a) Z�X +Z�X�Y = Z�X +Z�Y

and

(b) �Z +X���Z +X +Y� = �Z +X���Z +Y� (6.20)

Table 6.2 gives the proof of theorem 11(a) using the method of perfect induction. Theorem 11(b) is the
dual of theorem 11(a) and hence stands proved. A useful interpretation of this theorem is that, when

198 Digital Electronics

Table 6.2 Proof of theorem 11(a).

X Y Z ZX ZY ZX ZXY ZX +ZXY ZX+ZY

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 1 1 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 1
1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 1

a smaller term appears in a larger term except for one of the variables appearing as a complement in
the larger term, the complemented variable is redundant.

As an example, �A+B���A+B+C���A+B+D� can be simplified as follows:

�A+B���A+B+C���A+B+D�

= �A+B���B+C���A+B+D� = �A+B���B+C���B+D�

6.3.12 Theorem 12 (Consensus Theorem)

(a) X�Y +X�Z +Y�Z = X�Y +X�Z

and

(b) �X +Y���X +Z���Y +Z� = �X +Y���X +Z� (6.21)

Table 6.3 shows the proof of theorem 12(a) using the method of perfect induction. Theorem 12(b) is
the dual of theorem 12(a) and hence stands proved.

A useful interpretation of theorem 12 is as follows. If in a given Boolean expression we can identify
two terms with one having a variable and the other having its complement, then the term that is formed
by the product of the remaining variables in the two terms in the case of a sum-of-products expression

Table 6.3 Proof of theorem 12(a).

X Y Z XY XZ YZ XY +XZ +YZ XY +XZ

0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 1
0 1 0 0 0 0 0 0
0 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 1 0 1 1 1

Boolean Algebra and Simplification Techniques 199

or by the sum of the remaining variables in the case of a product-of-sums expression will be redundant.
The following example further illustrates the point:

A�B�C +A�C�D+B�C�D+B�C�D+A�C�D = A�B�C +A�C�D+B�C�D

If we consider the first two terms of the Boolean expression, B�C�D becomes redundant. If we consider
the first and third terms of the given Boolean expression, A�C�D becomes redundant.

Example 6.4

Prove that A�B�C�D + A�B�C�D + A�B�C�D + A�B�C�D + A�B�C�D�E + A�B�C�D�E + A�B�C�D�E can
be simplified to A�B�

Solution

A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D�E +A�B�C�D�E +A�B�C�D�E

=A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D

=A�B��C�D+C�D+C�D+C�D� = A�B

• A�B�C�D appears in A�B�C�D�E, A�B�C�D appears in A�B�C�D�E and A�B�C�D appears in
A�B�C�D�E.

• As a result, all three five-variable terms are redundant.
• Also, variables C and D appear in all possible combinations and are therefore redundant.

6.3.13 Theorem 13 (DeMorgan’s Theorem)

(a) �X1 +X2 +X3 + 	 	 	 +Xn� = X1�X2�X3 � 	 	 	 �Xn (6.22)

(b) �X1�X2�X3� 	 	 	 �Xn� = �X1 +X2 +X3 + 	 	 	 +Xn� (6.23)

According to the first theorem the complement of a sum equals the product of complements, while
according to the second theorem the complement of a product equals the sum of complements. Figures
6.3(a) and (b) show logic diagram representations of De Morgan’s theorems. While the first theorem
can be interpreted to say that a multi-input NOR gate can be implemented as a multi-input bubbled
AND gate, the second theorem, which is the dual of the first, can be interpreted to say that a multi-input
NAND gate can be implemented as a multi-input bubbled OR gate.

DeMorgan’s theorem can be proved as follows. Let us assume that all variables are in a logic ‘0’
state. In that case

LHS = �X1 +X2 +X3 + · · · +Xn� = �0+0+0+ · · · +0� = 0 = 1

RHS = X1�X2�X3 � 	 	 	 �Xn = 0�0�0 � 	 	 	 � 0 = 1�1�1� 	 	 	 �1 = 1

Therefore, LHS = RHS.
Now, let us assume that any one of the n variables, say X1, is in a logic HIGH state:

200 Digital Electronics

X1
X2

Xn

X1
X2

Xn

(a)

X1
X2

X3

X1
X2

Xn

(b)

Figure 6.3 DeMorgan’s theorem.

LHS = �X1 +X2 +X3 + · · ·Xn� = �1+0+0+· · ·+0� = 1 = 0

RHS = X1�X2�X3� 	 	 	 �Xn = 1�0�0� 	 	 	 �0 = 0�1�1� 	 	 	 �1 = 0

Therefore, again LHS = RHS.
The same holds good when more than one or all variables are in the logic ‘1’ state. Therefore,

theorem 13(a) stands proved. Since theorem 13(b) is the dual of theorem 13(a), the same also stands
proved. Theorem 13(b), though, can be proved on similar lines.

6.3.14 Theorem 14 (Transposition Theorem)

(a) X�Y +X�Z = �X +Z���X +Y�

and

(b) �X +Y���X +Z� = X�Z +X�Y (6.24)

This theorem can be applied to any sum-of-products or product-of-sums expression having two terms,
provided that a given variable in one term has its complement in the other. Table 6.4 gives the proof
of theorem 14(a) using the method of perfect induction. Theorem 14(b) is the dual of theorem 14(a)
and hence stands proved.

As an example,

A�B+A�B = �A+B���A+B� and A�B+A�B = �A+B���A+B�

Incidentally, the first expression is the representation of a two-input EX-OR gate, while the second
expression gives two forms of representation of a two-input EX-NOR gate.

Boolean Algebra and Simplification Techniques 201

Table 6.4 Proof of theorem 13(a).

X Y Z XY XZ X+Z X +Y XY +XZ (X+Z)�X +Y�

0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 1 1 1
0 1 0 0 0 0 1 0 0
0 1 1 0 1 1 1 1 1
1 0 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0
1 1 0 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1

6.3.15 Theorem 15

(a) X�f�X�X�Y�Z� 	 	 	 � = X�f�1� 0� Y�Z� 	 	 	 � (6.25)

(b) X +f�X�X�Y�Z� 	 	 	 � = X +f�0� 1� Y�Z� 	 	 	 � (6.26)

According to theorem 15(a), if a variable X is multiplied by an expression containing X and X in
addition to other variables, then all Xs and Xs can be replaced with 1s and 0s respectively. This would
be valid as X�X = X and X�1 = X. Also, X�X = 0 and X�0 = 0. According to theorem 15(b), if a
variable X is added to an expression containing terms having X and X in addition to other variables,
then all Xs can be replaced with 0s and all Xs can be replaced with ls. This is again permissible as
X +X as well as X +0 equals X. Also, X +X and X +1 both equal 1.

This pair of theorems is very useful in eliminating redundancy in a given expression. An important
corollary of this pair of theorems is that, if the multiplying variable is X in theorem 15(a), then all
Xs will be replaced by 0s and all Xs will be replaced by ls. Similarly, if the variable being added in
theorem 15(b) is X, then Xs and Xs in the expression are replaced by 1s and 0s respectively. In that
case the two theorems can be written as follows:

(a) X�f�X�X�Y�Z� 	 	 	 � = X�f�0� 1� Y�Z� 	 	 	 � (6.27)

(b) X +f�X�X�Y�Z� 	 	 	 � = X +f�1� 0� Y�Z� 	 	 	 � (6.28)

The theorems are further illustrated with the help of the following examples:

1. A��A�B+A�C + �A+D���A+E�� = A��0�B+1�C + �0+D���1+E�� = A��C +D�.
2. A+ �A�B+A�C + �A+B���A+E�� = A+ �0�B+1�C + �0+B���1+E�� = A+C +B.

6.3.16 Theorem 16

(a) f�X�X�Y� 	 	 	 �Z� = X�f�1� 0� Y� 	 	 	 �Z�+X�f�0� 1� Y� 	 	 	 �Z� (6.29)

(b) f�X�X�Y� 	 	 	 �Z� = �X +f�0� 1� Y� 	 	 	 �Z���X +f�1� 0� Y� 	 	 	 �Z�� (6.30)

202 Digital Electronics

The proof of theorem 16(a) is straightforward and is given as follows:

f�X�X�Y� 	 	 	 �Z� = X�f�X�X�Y� 	 	 	 �Z�+X�f�X�X�Y� 	 	 	 �Z�

= X�f�1� 0� Y� 	 	 	 �Z�+X�f�0� 1� Y� 	 	 	 �Z���Theorem 15(a)�

Also

f�X�X�Y� 	 	 	 �Z� = �X +f�X�X�Y� 	 	 	 �Z���X + �f�X�X�Y� 	 	 	 �Z��

= �X +f�0� 1� Y� 	 	 	 �Z���X +f�1� 0� Y� 	 	 	 �Z���Theorem 15(b)�

6.3.17 Theorem 17 (Involution Law)

X = X (6.31)

Involution law says that the complement of the complement of an expression leaves the expression
unchanged. Also, the dual of the dual of an expression is the original expression. This theorem forms
the basis of finding the equivalent product-of-sums expression for a given sum-of-products expression,
and vice versa.

Example 6.5

Prove the following:

1. L��M +N�+L�P�Q = �L+P�Q���L+M +N��
2. �A�B+C +D���D+ �E +F��G� = D��A�B+C�+D�G��E +F��

Solution
1. Let us assume that L = X� �M +N� = Y and P�Q = Z.

The LHS of the given Boolean equation then reduces to X�Y +X�Z.
Applying the transposition theorem,

X�Y +X�Z = �X +Z���X +Y� = �L+P�Q��L+M +N� = RHS

2. Let us assume D = X�A�B+C = Y and �E +F��G = Z.
The LHS of given the Boolean equation then reduces to �X +Y���X +Z�.
Applying the transposition theorem,

�X +Y���X +Z� = X�Z +X�Y = D�G��E +F�+D��A�B+C� = RHS

Boolean Algebra and Simplification Techniques 203

(A+B)

A

B

Figure 6.4 Example 6.6.

Example 6.6

Starting with the Boolean expression for a two-input OR gate, apply Boolean laws and theorems to
modify it in such a way as to facilitate the implementation of a two-input OR gate by using two-input
NAND gates only.

Solution
• A two-input OR gate is represented by the Boolean equation Y = �A+B�,

where A and B are the input logic variables and Y is the output.
• Now��A+B� = �A+B� Involution law

= �A�B� DeMorgan’s theorem

= ��A�A���B�B�� Idempotent law
• Figure 6.4 shows the NAND gate implementation of a two-input OR gate.

Example 6.7

Apply suitable Boolean laws and theorems to modify the expression for a two-input EX-OR gate in
such a way as to implement a two-input EX-OR gate by using the minimum number of two-input NAND
gates only.

Solution
• A two-input EX-OR gate is represented by the Boolean expression Y = A�B+A�B.

• Now�A�B+A�B = A�B+A�B Involution law

= A�B�A�B DeMorgan’s law

= �B��A+B����A��A+B��

= �B�A�B���A�A�B� �6�32�

• Equation (6.32) is in a form that can be implemented with NAND gates only.
• Figure 6.5 shows the logic diagram.

204 Digital Electronics

AB+AB
– –

A.AB
–———–

A

B

AB
––

B .AB
–———–

Figure 6.5 Example 6.7.

6.4 Simplification Techniques
In this section, we will discuss techniques other than the application of laws and theorems of Boolean
algebra discussed in the preceding paragraphs of this chapter for simplifying or more precisely
minimizing a given complex Boolean expression. The primary objective of all simplification procedures
is to obtain an expression that has the minimum number of terms. Obtaining an expression with the
minimum number of literals is usually the secondary objective. If there is more than one possible
solution with the same number of terms, the one having the minimum number of literals is the choice.
The techniques to be discussed include:

(a) the Quine–McCluskey tabular method;
(b) the Karnaugh map method.

Before we move on to discuss these techniques in detail, it would be relevant briefly to describe
sum-of-products and product-of-sums Boolean expressions. The given Boolean expression will be in
either of the two forms, and the objective will be to find a minimized expression in the same or the
other form.

6.4.1 Sum-of-Products Boolean Expressions

A sum-of-products expression contains the sum of different terms, with each term being either a
single literal or a product of more than one literal. It can be obtained from the truth table directly
by considering those input combinations that produce a logic ‘1’ at the output. Each such input
combination produces a term. Different terms are given by the product of the corresponding literals.
The sum of all terms gives the expression. For example, the truth table in Table 6.5 can be represented
by the Boolean expression

Y = A �B�C +A�B�C +A�B�C +A�B�C (6.33)

Considering the first term, the output is ‘1’ when A = 0�B = 0 and C = 0. This is possible only when
A, B and C are ANDed. Also, for the second term, the output is ‘1’ only when B, C and A are ANDed.
Other terms can be explained similarly. A sum-of-products expression is also known as a minterm
expression.

Boolean Algebra and Simplification Techniques 205

Table 6.5 truth table of boolean expression of
equation 6.33.

A B C Y

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

6.4.2 Product-of-Sums Expressions

A product-of-sums expression contains the product of different terms, with each term being either a
single literal or a sum of more than one literal. It can be obtained from the truth table by considering
those input combinations that produce a logic ‘0’ at the output. Each such input combination gives a
term, and the product of all such terms gives the expression. Different terms are obtained by taking
the sum of the corresponding literals. Here, ‘0’ and ‘1’ respectively mean the uncomplemented and
complemented variables, unlike sum-of-products expressions where ‘0’ and ‘1’ respectively mean
complemented and uncomplemented variables.

To illustrate this further, consider once again the truth table in Table 6.5. Since each term in the
case of the product-of-sums expression is going to be the sum of literals, this implies that it is going
to be implemented using an OR operation. Now, an OR gate produces a logic ‘0’ only when all its
inputs are in the logic ‘0’ state, which means that the first term corresponding to the second row of
the truth table will be A+B+C. The product-of-sums Boolean expression for this truth table is given
by �A+B+C���A+B+C���A+B+C���A+B+C�.

Transforming the given product-of-sums expression into an equivalent sum-of-products expression
is a straightforward process. Multiplying out the given expression and carrying out the obvious
simplification provides the equivalent sum-of-products expression:

�A+B+C���A+B+C���A+B+C���A+B+C�

= �A�A+A�B+A�C +B�A+B�B+B�C +C�A+C�B+C�C���A�A+A�B+A�C +B�A+B�B

+B�C +C�A+C�B+C�C

= �A+B�C +B�C���A+B�C +C�B� = A�B�C +A�B�C +A�B�C +A�B�C

A given sum-of-products expression can be transformed into an equivalent product-of-sums expression
by (a) taking the dual of the given expression, (b) multiplying out different terms to get the sum-of-
products form, (c) removing redundancy and (d) taking a dual to get the equivalent product-of-sums
expression. As an illustration, let us find the equivalent product-of-sums expression of the sum-of-
products expression

A�B+A�B

The dual of the given expression = �A+B���A+B�:

�A+B���A+B� = A�A+A�B+B�A+B�B = 0+A�B+B�A+0 = A�B+A�B

206 Digital Electronics

The dual of �A�B+A�B� = �A+B���A+B�. Therefore

A�B+A�B = �A+B���A+B�

6.4.3 Expanded Forms of Boolean Expressions

Expanded sum-of-products and product-of-sums forms of Boolean expressions are useful not only
in analysing these expressions but also in the application of minimization techniques such as the
Quine–McCluskey tabular method and the Karnaugh mapping method for simplifying given Boolean
expressions. The expanded form, sum-of-products or product-of-sums, is obtained by including all
possible combinations of missing variables.

As an illustration, consider the following sum-of-products expression:

A�B+B�C +A�B�C +A�C

It is a three-variable expression. Expanded versions of different minterms can be written as follows:

• A�B = A�B��C +C� = A�B�C +A�B�C�
• B�C = B�C��A+A� = B�C�A+B�C�A�
• A�B�C is a complete term and has no missing variable.
• A�C = A�C��B+B� = A�C�B+A�C�B.

The expanded sum-of-products expression is therefore given by

A�B�C +A�B�C +A�B�C +A�B�C +A�B�C +A�B�C +A�B�C = A�B�C +A�B�C

+A�B�C +A�B�C +A�B�C +A�B�C

As another illustration, consider the product-of-sums expression

�A+B���A+B+C +D�

It is four-variable expression with A, B, C and D being the four variables. A+B in this case expands
to �A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D�.

The expanded product-of-sums expression is therefore given by

�A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D�

= �A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D�

6.4.4 Canonical Form of Boolean Expressions

An expanded form of Boolean expression, where each term contains all Boolean variables in their true
or complemented form, is also known as the canonical form of the expression.

As an illustration, f�A�B�C� = A�B�C + A�B�C + A�B�C is a Boolean function of three variables
expressed in canonical form. This function after simplification reduces to A�B +A�B�C and loses its
canonical form.

Boolean Algebra and Simplification Techniques 207

6.4.5
 and � Nomenclature

� and notations are respectively used to represent sum-of-products and product-of-sums Boolean
expressions. We will illustrate these notations with the help of examples. Let us consider the following
Boolean function:

f�A�B�C�D� = A�B�C +A�B�C�D+A�B�C�D+A�B�C�D

We will represent this function using � notation. The first step is to write the expanded sum-of-products
given by

f�A�B�C�D� = A�B�C��D+D�+A�B�C�D+A�B�C�D+A�B�C�D

= A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D

Different terms are then arranged in ascending order of the binary numbers represented by various
terms, with true variables representing a ‘1’ and a complemented variable representing a ‘0’. The
expression becomes

f�A�B�C�D� = A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D

The different terms represent 0001, 0101, 1000, 1001 and 1111. The decimal equivalent of these terms
enclosed in the � then gives the � notation for the given Boolean function. That is, f�A�B�C�D� =∑

1� 5� 8� 9� 15.
The complement of f�A, B, C, D�, that is,f ′(A, B, C, D�, can be directly determined from � notation

by including the left-out entries from the list of all possible numbers for a four-variable function.
That is,

f ′�A�B�C�D� = ∑
0� 2� 3� 4� 6� 7� 10� 11� 12� 13� 14

Let us now take the case of a product-of-sums Boolean function and its representation in
nomenclature. Let us consider the Boolean function

f�A�B�C�D� = �B+C +D���A+B+C +D���A+B+C +D�

The expanded product-of-sums form is given by

�A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D�

The binary numbers represented by the different sum terms are 0011, 1011, 1100 and 0111 (true and
complemented variables here represent 0 and 1 respectively). When arranged in ascending order, these
numbers are 0011, 0111, 1011 and 1100. Therefore,

f�A�B�C�D� = ∏
3� 7� 11� 12 and f ′�A�B�C�D� = ∏

0� 1� 2� 4� 5� 6� 8� 9� 10� 13� 14� 15

An interesting corollary of what we have discussed above is that, if a given Boolean function
f�A,B,C� is given by f�A�B�C� = ∑

0� 1� 4� 7, then

f�A�B�C� = ∏
2� 3� 5� 6 and f ′�A�B�C� = ∑

2� 3� 5� 6 = ∏
0� 1� 4� 7

208 Digital Electronics

Optional combinations can also be incorporated into � and nomenclature using suitable identifiers;
� or d are used as identifiers. For example, if f�A�B�C� = A�B�C +A�B�C +A�B�C and A�B�C�A�B�C
are optional combinations, then

f�A�B�C� = ∑
0� 4� 5+∑

�

3� 7 = ∑
0� 4� 5+∑

d

3� 7

f�A�B�C� = ∏
1� 2� 6+∏

�

3� 7 = ∏
1� 2� 6+∏

d

3� 7

Example 6.8

For a Boolean function f�A�B� =∑
0� 2� prove that f�A�B� =∏

1� 3 and f ′�A�B� =∑
1� 3 = ∏

0� 2.

Solution
• f�A�B� = ∑

0� 2 =A�B+A�B = B��A+A� = B.
• Now,

∏
1� 3 = �A+B���A+B� = A�A+A�B+B�A+B�B = A�B+A�B+B = B.

• Now,
∑

1� 3 = A�B+A�B = B��A+A� = B�
and

∏
0� 2 =�A+B���A+B� = A�A+A�B+B�A+B�B = A�B+A�B+B = B.

• Therefore,
∑

1� 3 = ∏
0� 2.

• Also, f�A�B� = B.
• Therefore, f ′�A�B� = B or f ′�A�B� = ∑

1� 3 = ∏
0� 2.

6.5 Quine–McCluskey Tabular Method
The Quine–McCluskey tabular method of simplification is based on the complementation theorem,
which says that

X�Y +X�Y = X (6.34)

where X represents either a variable or a term or an expression and Y is a variable. This theorem
implies that, if a Boolean expression contains two terms that differ only in one variable, then they can
be combined together and replaced with a term that is smaller by one literal. The same procedure is
applied for the other pairs of terms wherever such a reduction is possible. All these terms reduced
by one literal are further examined to see if they can be reduced further. The process continues
until the terms become irreducible. The irreducible terms are called prime implicants. An optimum
set of prime implicants that can account for all the original terms then constitutes the minimized
expression. The technique can be applied equally well for minimizing sum-of-products and product-
of-sums expressions and is particularly useful for Boolean functions having more than six variables as
it can be mechanized and run on a computer. On the other hand, the Karnaugh mapping method, to be
discussed later, is a graphical method and becomes very cumbersome when the number of variables
exceeds six.

The step-by-step procedure for application of the tabular method for minimizing Boolean expressions,
both sum-of-products and product-of-sums, is outlined as follows:

1. The Boolean expression to be simplified is expanded if it is not in expanded form.
2. Different terms in the expression are divided into groups depending upon the number of 1s they have.

True and complemented variables in a sum-of-products expression mean ‘1’ and ‘0’ respectively.

Boolean Algebra and Simplification Techniques 209

The reverse is true in the case of a product-of-sums expression. The groups are then arranged,
beginning with the group having the least number of 1s in its included terms. Terms within the
same group are arranged in ascending order of the decimal numbers represented by these terms.

As an illustration, consider the expression

A�B�C +A�B�C +A�B�C +A�B�C +A�B�C

The grouping of different terms and the arrangement of different terms within the group are shown
below:

A�B�C 000

A�B�C 100
_____ −→
A�B�C 011

A�B�C 101

ABC 111

First group

Second group

Third group

Fourth group

As another illustration, consider a product-of-sums expression given by

�A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D��

�A+B+C +D��A+B+C +D�

The formation of groups and the arrangement of terms within different groups for the product-of-
sums expression are as follows:

A�B�C�D 0000
______ ______

A�B�C�D 0011
A�B�C�D 0101
A�B�C�D −→ 1010
______ ______

A�B�C�D 0111
A�B�C�D 1110
______ ______

A�B�C�D 1111
_______ ______

It may be mentioned here that the Boolean expressions that we have considered above did not
contain any optional terms. If there are any, they are also considered while forming groups. This
completes the first table.

3. The terms of the first group are successively matched with those in the next adjacent higher-
order group to look for any possible matching and consequent reduction. The terms are considered
matched when all literals except for one match. The pairs of matched terms are replaced with a

210 Digital Electronics

single term where the position of the unmatched literals is replaced with a dash (—). These new
terms formed as a result of the matching process find a place in the second table. The terms in the
first table that do not find a match are called the prime implicants and are marked with an asterisk
(∗). The matched terms are ticked (�).

4. Terms in the second group are compared with those in the third group to look for a possible match.
Again, terms in the second group that do not find a match become the prime implicants.

5. The process continues until we reach the last group. This completes the first round of matching.
The terms resulting from the matching in the first round are recorded in the second table.

6. The next step is to perform matching operations in the second table. While comparing the terms for
a match, it is important that a dash (—) is also treated like any other literal, that is, the dash signs
also need to match. The process continues on to the third table, the fourth table and so on until the
terms become irreducible any further.

7. An optimum selection of prime implicants to account for all the original terms constitutes the terms
for the minimized expression. Although optional (also called ‘don’t care’) terms are considered for
matching, they do not have to be accounted for once prime implicants have been identified.

Let us consider an example. Consider the following sum-of-products expression:

A�B�C +A�B�D+A�C�D+B�C�D+A�B�C�D (6.35)

In the first step, we write the expanded version of the given expression. It can be written as follows:

A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D

+A�B�C�D+A�B�C�D

The formation of groups, the placement of terms in different groups and the first-round matching are
shown as follows:

A B C D A B C D A B C D

0 0 0 1 0 0 0 1 � 0 0 − 1 �
0 0 1 1 0 1 0 0 � 0 − 0 1 �
0 1 0 0 − 0 0 1 �
0 1 0 1 0 0 1 1 � 0 1 0 − �
0 1 1 0 0 1 0 1 � 0 1 − 0 �
0 1 1 1 0 1 1 0 � − 1 0 0 �
1 0 0 1 1 0 0 1 �
1 1 0 0 1 1 0 0 � 0 − 1 1 �

1 1 0 1 0 1 1 1 � 0 1 − 1 �

1 1 0 1 � − 1 0 1 �

0 1 1 − �
1 − 0 1 �
1 1 0 − �

Boolean Algebra and Simplification Techniques 211

The second round of matching begins with the table shown on the previous page. Each term in the first
group is compared with every term in the second group. For instance, the first term in the first group
00−1 matches with the second term in the second group 01−1 to yield 0−−1, which is recorded in
the table shown below. The process continues until all terms have been compared for a possible match.
Since this new table has only one group, the terms contained therein are all prime implicants. In the
present example, the terms in the first and second tables have all found a match. But that is not always
the case.

A B C D

0 − − 1 *
− − 0 1 *
0 1 − − *
− 1 0 − *

The next table is what is known as the prime implicant table. The prime implicant table contains all the
original terms in different columns and all the prime implicants recorded in different rows as shown
below:

0001 0011 0100 0101 0110 0111 1001 1100 1101

� � � � 0− −1 P → A�D

� � � � − −01 Q → C�D

� � � � 01− − R → A�B

� � � � –10− S → B�C

Each prime implicant is identified by a letter. Each prime implicant is then examined one by one and
the terms it can account for are ticked as shown. The next step is to write a product-of-sums expression
using the prime implicants to account for all the terms. In the present illustration, it is given as follows.

�P +Q���P���R+S���P +Q+R+S���R���P +R���Q���S���Q+S�

Obvious simplification reduces this expression to PQRS which can be interpreted to mean that all
prime implicants, that is, P, Q, R and S, are needed to account for all the original terms.

Therefore, the minimized expression = A�D+C�D+A�B+B�C.
What has been described above is the formal method of determining the optimum set of prime

implicants. In most of the cases where the prime implicant table is not too complex, the exercise can
be done even intuitively. The exercise begins with identification of those terms that can be accounted
for by only a single prime implicant. In the present example, 0011, 0110, 1001 and 1100 are such
terms. As a result, P, Q, R and S become the essential prime implicants. The next step is to find out if
any terms have not been covered by the essential prime implicants. In the present case, all terms have
been covered by essential prime implicants. In fact, all prime implicants are essential prime implicants
in the present example.

As another illustration, let us consider a product-of-sums expression given by

�A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D�

The procedure is similar to that described for the case of simplification of sum-of-products expressions.
The resulting tables leading to identification of prime implicants are as follows:

212 Digital Electronics

A B C D A B C D A B C D A B C D

0 1 0 1 0 1 0 1 � 0 1 − 1 � − 1 − 1 *

0 1 1 1 − 1 0 1 �
1 1 0 1 0 1 1 1 �
1 1 1 0 1 1 0 1 � − 1 1 1 �
1 1 1 1 1 1 1 0 � 1 1 − 1 �

1 1 1 − *
1 1 1 1 �

The prime implicant table is constructed after all prime implicants have been identified to look for
the optimum set of prime implicants needed to account for all the original terms. The prime implicant
table shows that both the prime implicants are the essential ones:

0101 0111 1101 1110 1111 Prime implicants

� � 111−
� � � � −1−1

The minimized expression = �A+B+C���B+D�.

6.5.1 Tabular Method for Multi-Output Functions

When it comes to a multi-output logic network, a network that has more than one output, sharing of
some logic blocks between different functions is highly probable. For an optimum logic implementation
of the multi-output function, different functions cannot be and should not be minimized in isolation
because a possible common term that could have been shared may not turn out to be a prime implicant
if the functions are worked out individually. The method of applying the tabular approach to multi-
output functions is to get a minimized set of expressions that would lead to an optimum overall system.
The method is illustrated by the following example.

Consider a logic system with two outputs that is described by the following Boolean expressions:

Y1 = A�B�D+A�C�D+A�C�D (6.36)

Y2 = A�B�C +A�C�D+A�B�C�D+A�B�C�D (6.37)

The expanded forms of the two functions are as follows:

Y1 = A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D

Y1 = A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D

Y2 = A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D

The rows representing different terms are arranged in the usual manner, with all the terms contained
in the two functions finding a place without repetition, as shown in the table below:

Boolean Algebra and Simplification Techniques 213

ABCD 1 2

0000 � �

0010 � �
0100 � �

0011 � �
0101 � �
0110 � �
1010 � �

0111 � � �
1011 � �

1111 � �

Each term is checked under the column or columns depending upon the functions in which it is
contained. For instance, if a certain term is contained in the logic expressions for both output 1
and output 2, it will be checked in both output columns. The matching process begins in the same
way as described earlier for the case of single-output functions, with some modifications outlined
as follows:

1. Only those terms can be combined that have at least one check mark in the output column in
common. For instance, 0000 cannot combine with 0010 but can combine with 0100.

2. In the resulting row, only the common outputs are checked. For instance, when 0101 is matched
with 0111, then, in the resulting term 01–1, only output 1 will be checked.

3. A combining term can be checked off only if the resulting term accounts for all the outputs in
which the term is contained.

The table below shows the results of the first round of matching:

ABCD 1 2

0−00 � *
0−10 � *
−010 � *
010− � *

0−11 � *
01−1 � *
011− � *
101− � *

−111 � *
1−11 � *

No further matching is possible. The prime implicant table is shown below:

214 Digital Electronics

Output 1 Output 2

0000 0011 0100 0101 0111 0010 0110 0111 1010 1011 1111 ABCD

� � 0−00
� � 0−10
� � −010

� � 010−
� � 0−11

� � 01−1
� � 011−

� � 101−
� � −111

� � 1−11

For each prime implicant, check marks are placed only in columns that pertain to the outputs checked
off for this prime implicant. For instance, 0-00 has only output 1 checked off. Therefore, the relevant
terms under output 1 will be checked off. The completed table is treated as a whole while marking
the required prime implicants to be considered for writing the minimized expressions. The minimized
expressions are as follows:

Y1 = A�C�D+A�C�D+A�B�C and Y2 = B�C�D+A�B�C +A�C�D

Example 6.9

Using the Quine–McCluskey tabular method, find the minimum sum of products for f�A�B�C�D� =∑
�1� 2� 3� 9� 12� 13� 14�+∑

�

�0� 7� 10� 15�.

Solution
The different steps to finding the solution to the given problem are tabulated below. As we can see,
eight prime implicants have been identified. These prime implicants along with the inputs constitute
the prime implicant table. Remember that optional inputs are not considered while constructing the
prime implicant table:

A B C D A B C D A B C D

0 0 0 0 � 0 0 0 − � 0 0 − − *
0 0 − 0 � 1 1 − − *

0 0 0 1 � 0 0 − 1 �
0 0 1 0 � − 0 0 1 *

0 0 1 − �
0 0 1 1 � − 0 1 0 *
1 0 0 1 �
1 0 1 0 � 0 − 1 1 *
1 1 0 0 � 1 − 0 1 *

1 − 1 0 *
0 1 1 1 � 1 1 0 − �
1 1 0 1 � 1 1 − 0 �
1 1 1 0 �

− 1 1 1 *
1 1 1 1 � 1 1 − 1 �

1 1 1 − �

Boolean Algebra and Simplification Techniques 215

The product-of-sums expression that tells about the combination of prime implicants required to
account for all the terms is given by the expression

�L+S���M +S���N +S���L+P���T���P +T���Q+T� (6.38)

After obvious simplification, this reduces to the expression

T��L+S���M +S���N +S���L+P�

= T��LM +LS +MS +S���LN +PN +LS +PS�

= T��LM +S���LN +PN +LS +PS�

= T��LMN +LMPN +LMS +LMPS +LNS +PNS +LS +PS�

= T��LMN +LMPN +LS +PS�

= TLMN +TLMPN +TLS +TPS (6.39)

0001 0010 0011 1001 1100 1101 1110 Prime implicants

� � −001 L
� −010 M

� 0−11 N
� � 1−01 P

� 1−10 Q
−111 R

� � � 00−− S
� � � 11−− T

The sum-of-products Boolean expression (6.39) states that all the input combinations can be accounted
for by the prime implicants (T , L, M , N� or (T , L, M , P�N� or (T , L, S� or (T , P, S�. The most
optimum expression would result from either TLS or TPS. Therefore, the minimized Boolean function
is given by

f�A�B�C�D� = A�B+B�C�D+A�B (6.40)
or by

f�A�B�C�D� = A�B+A�B+A�C�D (6.41)

Example 6.10

A logic system has three inputs A, B and C and two outputs Y1 and Y2. The output functions Y1 and Y2

are expressed by Y1 = A�B�C +B�C +A�C +A�B�C +A�B�C and Y2 = A�B+A�C +A�B�C. Determine
the minimized output logic functions using the Quine–McCluskey tabular method.

Solution
The expanded forms of Y1 and Y2 are written as follows:

Y1 =A�B�C +A�B�C +A�B�C +A�B�C +A�B�C +A�B�C +A�B�C

=A�B�C +A�B�C +A�B�C +A�B�C +A�B�C +A�B�C

Y2 = A�B�C +A�B�C +A�B�C +A�B�C +A�B�C

216 Digital Electronics

The different steps leading to construction of the prime implicant table are given in tabular form below:

A B C 1 2 A B C 1 2 A B C 1 2

0 0 0 � � 0 − 0 � * − 1 − � � *

0 1 0 � � � 0 1 − � � �
1 0 0 � � − 1 0 � � �

1 − 0 � *

0 1 1 � � �
1 0 1 � � − 1 1 � � �
1 1 0 � � � 1 − 1 � *

1 1 − � � �
1 1 1 � � �

Y1 Y2 ABC

000 010 011 101 110 111 010 011 100 110 111

� � 0−0
� � 1−0

� � 1−1
� � � � � � � � −1−

From the prime implicant table, the minimized output Boolean functions can be written as follows:

Y1 = B+A�C +A�C (6.42)

Y2 = B+A�C (6.43)

6.6 Karnaugh Map Method
A Karnaugh map is a graphical representation of the logic system. It can be drawn directly from either
minterm (sum-of-products) or maxterm (product-of-sums) Boolean expressions. Drawing a Karnaugh
map from the truth table involves an additional step of writing the minterm or maxterm expression
depending upon whether it is desired to have a minimized sum-of-products or a minimized product-
of-sums expression.

6.6.1 Construction of a Karnaugh Map

An n-variable Karnaugh map has 2n squares, and each possible input is allotted a square. In the case
of a minterm Karnaugh map, ‘1’ is placed in all those squares for which the output is ‘1’, and ‘0’

Boolean Algebra and Simplification Techniques 217

is placed in all those squares for which the output is ‘0’. 0s are omitted for simplicity. An ‘X’ is
placed in squares corresponding to ‘don’t care’ conditions. In the case of a maxterm Karnaugh map,
a ‘1’ is placed in all those squares for which the output is ‘0’, and a ‘0’ is placed for input entries
corresponding to a ‘1’ output. Again, 0s are omitted for simplicity, and an ‘X’ is placed in squares
corresponding to ‘don’t care’ conditions.

The choice of terms identifying different rows and columns of a Karnaugh map is not unique for a
given number of variables. The only condition to be satisfied is that the designation of adjacent rows
and adjacent columns should be the same except for one of the literals being complemented. Also, the
extreme rows and extreme columns are considered adjacent. Some of the possible designation styles for
two-, three- and four-variable minterm Karnaugh maps are given in Figs 6.6, 6.7 and 6.8 respectively.

The style of row identification need not be the same as that of column identification as long as it
meets the basic requirement with respect to adjacent terms. It is, however, accepted practice to adopt a
uniform style of row and column identification. Also, the style shown in Figs 6.6(a), 6.7(a) and 6.8(a)
is more commonly used. Some more styles are shown in Fig. 6.9. A similar discussion applies for
maxterm Karnaugh maps.

Having drawn the Karnaugh map, the next step is to form groups of 1s as per the following
guidelines:

1. Each square containing a ‘1’ must be considered at least once, although it can be considered as
often as desired.

2. The objective should be to account for all the marked squares in the minimum number of groups.
3. The number of squares in a group must always be a power of 2, i.e. groups can have 1, 2, 4� 8, 16,

	 	 	 squares.
4. Each group should be as large as possible, which means that a square should not be accounted for

by itself if it can be accounted for by a group of two squares; a group of two squares should not be
made if the involved squares can be included in a group of four squares and so on.

5. ‘Don’t care’ entries can be used in accounting for all of 1-squares to make optimum groups. They
are marked ‘X’ in the corresponding squares. It is, however, not necessary to account for all ‘don’t
care’ entries. Only such entries that can be used to advantage should be used.

B B

A

A

(a)

B B

A

A

(b)

B B

A

A

(c)

B B

A

A

(d)

Figure 6.6 Two-variable Karnaugh map.

218 Digital Electronics

BC BC BC BC

A

A

(a)

BC BC BC BC

A

A

(b)

BC BC BC BC

A

A

(c)

BC BC BC BC

A

A

(d)

Figure 6.7 Three-variable Karnaugh map.

C D CD CD CD

AB

AB

AB

AB

(a)

C D CD CD CD

AB

AB

AB

AB

(b)

C D CD CD CD

AB

AB

AB

AB

(c)

C D CD CD CD

AB

AB

AB

AB

(d)

Figure 6.8 Four-variable Karnaugh map.

Boolean Algebra and Simplification Techniques 219

AB

CD

AB

AB

CDCD

AB

CD

AB

CD

AB

AB

CDCD

AB

CD

A

CC

A

D

BB

D

AB

CD

00

00

01

11

10

01 11 10

Figure 6.9 Different styles of row and column identification.

Having accounted for groups with all 1s, the minimum ‘sum-of-products’ or ‘product-of-sums’
expressions can be written directly from the Karnaugh map.

Figure 6.10 shows the truth table, minterm Karnaugh map and maxterm Karnaugh map of the
Boolean function of a two-input OR gate. The minterm and maxterm Boolean expressions for the
two-input OR gate are as follows:

Y = A+B (maxterm or product-of-sums) (6.44)

Y = A�B+A�B+A�B (minterm or sum-of-products) (6.45)

Figure 6.11 shows the truth table, minterm Karnaugh map and maxterm Karnaugh map of the three-
variable Boolean function

Y = A�B�C +A�B�C +A�B�C +A�B�C (6.46)

Y = �A+B+C���A+B+C���A+B+C���A+B+C� (6.47)

220 Digital Electronics

Truth table

A

0

0

1

1

B

0

1

0

1

Y

0

1

1

1

Sum-of-products K-map

B
A
A

B

1
1
1

Product-of-sums K-map

B
A
A

B

1

Figure 6.10 Two-variable Karnaugh maps.

A

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

C

0

1

0

1

0

1

0

1

Y

1

0

1

0

1

0

1

0

Sum-of-products K-map

BC BC BC

A
A

1

1

1

1

BC

Product-of-sums K-map

B+C B+C B+C

A
A

1

1

1

1

B+C

Figure 6.11 Three-variable Karnaugh maps.

Figure 6.12 shows the truth table, minterm Karnaugh map and maxterm Karnaugh map of the four-
variable Boolean function

Y = A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D (6.48)

Y = �A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D�

��A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D�
(6.49)

To illustrate the process of forming groups and then writing the corresponding minimized Boolean
expression, Figs 6.13(a) and (b) respectively show minterm and maxterm Karnaugh maps for the
Boolean functions expressed by equations (6.50) and (6.51). The minimized expressions as deduced
from Karnaugh maps in the two cases are given by Equation (6.52) in the case of the minterm Karnaugh
map and Equation (6.53) in the case of the maxterm Karnaugh map:

Y = A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D (6.50)

Y = �A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D�

��A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D���A+B+C +D� (6.51)

Y = B�D+B�D (6.52)

Y = D��A+B� (6.53)

Boolean Algebra and Simplification Techniques 221

Truth table

A

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

B

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

C

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Y

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

Sum-of-products K-map

AB

1

1

1

1

1

1

1

1

AB

AB

CDCD CDCD

AB

Product-of-sums K-map

A+B

1

1

1

1

1

1

1

1

A+B

A+B

C+DC+D C+DC+D

A+B

Figure 6.12 Four-variable Karnaugh maps.

Figure 6.13 Group formation in minterm and maxterm Karnaugh maps.

222 Digital Electronics

6.6.2 Karnaugh Map for Boolean Expressions with a Larger Number of
Variables

The construction of Karnaugh maps for a larger number of variables is a complex and cumbersome
exercise, although manageable up to six variables. Five- and six-variable representative Karnaugh
maps are shown in Figs 6.14(a) and (b) respectively. One important point to remember while forming
groups in Karnaugh maps involving more than four variables is that terms equidistant from the
central horizontal and central vertical lines are considered adjacent. These lines are shown thicker
in Figs 6.14(a) and (b). Squares marked ‘X’ in Figs 6.14(a) and (b) are adjacent and therefore
can be grouped.

Boolean expressions with more than four variables can also be represented by more than one four-
variable map. Five-, six-, seven- and eight-variable Boolean expressions can be represented by two,
four, eight and 16 four-variable maps respectively. In general, an n-variable Boolean expression can
be represented by 2n−4 four-variable maps. In such multiple maps, groups are made as before, except
that, in addition to adjacencies discussed earlier, corresponding squares in two adjacent maps are also
considered adjacent and can therefore be grouped. We will illustrate the process of formation of groups
in multiple Karnaugh maps with a larger number of variables with the help of examples. Consider the
five-variable Boolean function given by the equation

Y =A�B�C�D�E +A�B�C�D�E +A�B�C�D�E +A�B�C�D�E +A�B�C�D�E +A�B�C�D�E +A�B�C�D�E

+A�B�C�D�E +A�B�C�D�E (6.54)

Figure 6.14 Five-variable and six-variable Karnaugh maps.

Boolean Algebra and Simplification Techniques 223

Figure 6.15 Multiple Karnaugh map for a five-variable Boolean function.

The multiple Karnaugh map for this five-variable expression is shown in Fig. 6.15. The construction
of the Karnaugh map and the formation of groups are self-explanatory.

The minimized expression is given by the equation

Y = C�D�E +A�B�C�D+A�C�D�E +A�B�D�E (6.55)

As another illustration, consider a six-variable Boolean function given by the equation

Y =A�B�C�D�E�F +A�B�C�D�E�F +A�B�C�D�E�F +A�B�C�D�E�F +A�B�C�D�E�F

+A�B�C�D�E�F +A�B�C�D�E�F (6.56)

Figure 6.16 gives the Karnaugh map for this six-variable Boolean function, comprising four four-
variable Karnaugh maps. The figure also shows the formation of groups. The minimized expression is
given by the equation

Y = A�B�C�D�E +A�B�C�D�F +A�B�C�D�E�F +A�B�C�D�E�F +A�B�C�D�E�F (6.57)

Example 6.11

Minimize the Boolean function

f�A�B�C� = ∑
0� 1� 3� 5+∑

�

2� 7

using the mapping method in both minimized sum-of-products and product-of-sums forms.

224 Digital Electronics

Figure 6.16 Multiple Karnaugh map for a six-variable Boolean function.

Solution
• f�A�B�C� = ∑

0� 1� 3� 5+∑

�

2� 7 = ∏
4� 6+∏

�

2� 7.

• From given Boolean functions in � and notation, we can write sum-of-products and product-of-
sums Boolean expressions as follows:

f�A�B�C� = A�B�C +A�B�C +A�B�C +A�B�C (6.58)

f�A�B�C� = �A+B+C���A+B+C� (6.59)

Boolean Algebra and Simplification Techniques 225

Figure 6.17 Example 6.11.

• The ‘don’t care’ input combinations for the sum-of-products Boolean expression are A�B�C�A�B�C.
• The ‘don’t care’ input combinations for the product-of-sums expression are �A+B+C���A+B+C�.
• The Karnaugh maps for the two cases are shown in Figs 6.17(a) and (b).
• The minimized sum-of-products and product-of-sums Boolean functions are respectively given by

the equations

f�A�B�C� = C +A (6.60)

f�A�B�C� = A+C (6.61)

6.6.3 Karnaugh Maps for Multi-Output Functions

Karnaugh maps can be used for finding minimized Boolean expressions for multi-output functions. To
begin with, a Karnaugh map is drawn for each function following the guidelines described in the earlier
pages. In the second step, two-function Karnaugh maps are drawn. In the third step, three-function
Karnaugh maps are drawn. The process continues until we have a single all-function Karnaugh map.
As an illustration, for a logic system having four outputs, the first step would give four Karnaugh maps
for individual functions. The second step would give six two-function Karnaugh maps (1−2, 1−3,
1−4, 2−3, 2−4 and 3−4). The third step would yield four three−function Karnaugh maps (1−2−3,
1−2−4, 1−3−4 and 2−3−4) and lastly we have one four-function Karnaugh map. A multifunction
Karnaugh map is basically an intersection of the Karnaugh maps of the functions involved. That is, a
‘1’ appears in a square of a multifunction map only if a ‘1’ appears in the corresponding squares of the
maps of all the relevant functions. To illustrate further, a two-function map involving functions 1 and
2 would be an intersection of maps for functions 1 and 2. In the two-function map, squares will have
a ‘1’ only when the corresponding squares in functions 1 and 2 also have a ‘1’. Figure 6.18 illustrates
the formation of a three-function Karnaugh map from three given individual functions.

226 Digital Electronics

Figure 6.18 Three-function Karnaugh map.

The formation of groups begins with the largest multifunction map, which is nothing but the
intersection of maps of all individual functions. Then we move to the Karnaugh maps one step down
the order. The process continues until we reach the maps corresponding to individual functions. The
groups in all the Karnaugh maps other than the largest map are formed subject to the condition that,
once a group is identified in a certain function, then the same cannot be identified in any map of a
subset of that function. For example, a group identified in a four-function map cannot be identified
in a three-, two- or one-function map. With the formation of groups, prime implicants are identified.
These prime implicants can be compiled in the form of a table along with input combinations of
different output functions in the same way as for the tabular method to write minimized expressions. If
the expressions corresponding to different output functions are not very complex, then the minimized
expressions can even be written directly from the set of maps.

Example 6.12

Using Karnaugh maps, write the minimized Boolean expressions for the output functions of a two-output
logic system whose outputs Y1 and Y2 are given by the following Boolean functions:

Y1 = A�B�C +A�B�C +A�B�C +A�B�C (6.62)

Y2 = A�B�C +A�B�C +A�B�C +A�B�C +A�B�C (6.63)

Solution
The individual Karnaugh maps and the two-function map are shown in Fig. 6.19 along with the
formation of groups. The prime implicant table along with the input combinations for the two output
functions is given below:

Y1 Y2 Prime implicants
000 010 100 111 000 001 101 110 111

� � 0 0 0
� � 1 1 1

� � 0 − 0
� � − 0 0

� � 1 1 −
� � − 0 1

Boolean Algebra and Simplification Techniques 227

1 1

1

AB AB AB AB

C

C

1 1

1 1

AB AB AB AB

C

C

1 1

1

AB AB AB AB

C

C1

Y2 Y2-1Y1

Figure 6.19 Example 6.12.

The minimized expressions for Y1 and Y2 are as follows:

Y1 = B�C +A�C +A�B�C (6.64)

Y2 = A�B+A�B�C +B�C (6.65)

Example 6.13

Write the simplified Boolean expression given by the Karnaugh map shown in Fig. 6.20.

Solution
• The Karnaugh map is shown in Fig. 6.21.
• Consider the group of four 1s at the top left of the map. It yields a term A�C.
• Consider the group of four 1s, two on the extreme left and two on the extreme right. This group

yields a term A�D.
• The third group of two 1s is in the third row of the map. The third row corresponds to the intersection

of A and B, as is clear from the map. Therefore, this group yields a term ABC.
• The simplified Boolean expression is given by A�C +A�D+A�B�C.

Figure 6.20 Example 6.13.

228 Digital Electronics

1 11

1 1

11

1

CC

B

A

A

D

D

B

Figure 6.21 Solution to example 6.13.

Example 6.14

Minimizing a given Boolean expression using the Quine–McCluskey tabular method yields the following
prime implicants: −0−0, −1−1, 1−10 and 0−00. Draw the corresponding Karnaugh map.

Solution
• As is clear from the prime implicants, the expression has four variables. If the variables are assumed

to be A, B, C and D, then the given prime implicants correspond to the following terms:

1. −0−0 → B�D.
2. −1−1 → B�D.
3. 1−10 → A�C�D.
4. 0−00 → A�C�D.

• The Karnaugh map can now be drawn as shown in Fig. 6.22.

Example 6.15

A�B+C�D is a simplified Boolean expression of the expression A�B�C�D+A�B�C�D+A�B. Determine
if there are any ‘don’t care’ entries.

Solution
The expanded version of the given expression is given by the equation

Boolean Algebra and Simplification Techniques 229

1 1

1

1

11

11

1 1

CD

AB

A

A

AB

AB

BB

AB

CD

D

D

CD CD

Figure 6.22 Solution to example 6.14.

Figure 6.23 Example 6.15.

A�B�C�D+A�B�C�D+A�B��C�D+C�D+C�D+C�D� (6.66)

= A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D �6�63�

The Karnaugh map for this Boolean expression is shown in Fig. 6.23. Now, if it is to be a simplified
version of the expression A�B + C�D, then the lowermost square in the CD column should not be
empty. This implies that there is a ‘don’t care’ entry. This has been reflected in the map by putting
X in the relevant square. With the groups formed along with the ‘don’t care’ entry, the simplified
expression becomes the one stated in the problem.

230 Digital Electronics

Review Questions
1. Read the following statements carefully. For each one of these, identify the law associated with it.

Define the law and illustrate the same with one or two examples.

(a) While a NAND gate is equivalent to a bubbled OR gate, a NOR gate is equivalent to a bubbled
AND gate.

(b) When all the inputs of an AND gate or an OR gate are tied together to get a single-input,
single-output gate, both AND and OR gates with all their inputs tied together produce an output
that is the same as the input.

(c) When a variable is ORed with its complement the result is a logic ‘1’, and when it is ANDed
with its complement the result is a logic ‘0’, irrespective of the logic status of the variable.

(d) When two variables are ANDed and the result of the AND operation is ORed with one of the
variables, the result is that variable. Also, when two variables are ORed and the result of the
OR operation is ANDed with one of the variables, the result is that variable.

2. Write both sum-of-products and product-of-sums Boolean expressions for (a) a two-input AND
gate, (b) a two-input NAND-gate, (c) a two-input EX-OR gate and (d) a two-input NOR gate from
their respective truth tables.

3. What do you understand by canonical and expanded forms of Boolean expressions? Illustrate with
examples.

4. With the help of an example, prove that in an n-variable Karnaugh map, a group formed with 2n−m

1s will yield a term having m literals, where m = 1, 2, 3, 	 	 	 , n.
5. With the help of an example, prove that the dual of the complement of a Boolean expression is the

same as the complement of the dual of the same.

Problems
1. Simplify the following Boolean expressions:

(a) A�B�C +A�B�C +A�B�C +A�B�C +A�B�C +A�B�C +A�B�C +A�B�C;
(b) �A+B+C���A+B+C���C +D���C +D+E�.

(a) 1; (b) �A+B���C +D�

2. (a) Find the dual of A�B�C�D+A�B�C�D+A�B�C�D.
(b) Find the complement of A+ ��B+C��D+E��F .

�a� �A+B+C +D���A+B+C +D���A+B+C +D�� �b�A���B�C +D��E +F�

3. The dual of the complement of a certain Boolean expression is given by A�B�C + D�E + B�C�E.
Find the expression.

A�B�C +D�E +B�C�E

4. Consider the Boolean expression given by

B�C�D�E+B�C�D�E +A�B�C�E +A�B�C�D�E +A�B�C�D�E +A�B�C�D�E +A�B�D�E

+A�B�C�D�E +A�B�C�D�E

Boolean Algebra and Simplification Techniques 231

The simplified version of this Boolean expression is given by B�E +B�D�E +B�D�E. Determine if
there are any ‘don’t care’ entries. If yes, find them.

Yes, A�B�C�D�E�A�B�C�D�E�A�B�C�D�E
5. Write minterm and maxterm Boolean functions expressed by f�A�B�C� = 0, 3, 7

minterm: A�B�C +A�B�C +A�B�C +A�B�C +A�B�C
maxterm:�A+B+C���A+B+C���A+B+C�

6. Write a simplified maxterm Boolean expression for 0, 4, 5, 6, 7, 10, 14 using the Karnaugh
mapping method.

�A+B���A+B+C +D���A+C +D�

7. Simplify the following Boolean functions using the Quine–McCluskey tabulation method:

(a) f (A, B, C, D, E, F, G) = � (20, 21, 28, 29, 52, 53, 60, 61);
(b) f (A, B, C, D, E, F) = � (6, 9, 13,18,19, 25, 26, 27, 29, 41, 45, 57, 61).

(a� A�C�E�F ; (b� C�E�F +A�B�D�E +A�B�C�D�E�F

8. (a) Simplify the Boolean function f�X�Y�Z� = Y�Z+X�Z for the ‘don’t care’ condition expressed
as X�Y +X�Y�Z +X�Y �Z.

(b) Simplify the Boolean function given by f�A�B�C� = �A+B+C���A+B+C���A+B+C� for
the don’t care condition expressed as �A+B���A+B+C�.

(a) 1; (b) A�C

Further Reading
1. Holdsworth, B. and Woods, C. (2002) Digital Logic Design, Newnes, Oxford, UK.
2. Chen, W.-K. (2003) Logic Design, CRC Press, FL, USA.
3. Floyd, T. L. (2005) Digital Fundamentals, Prentice-Hall Inc., USA.
4. Tokheim, R. L. (1994) Schaum’s Outline Series of Digital Principles, McGraw-Hill Companies Inc., USA.

7
Arithmetic Circuits

Beginning with this chapter, and in the two chapters following, we will take a comprehensive look
at various building blocks used to design more complex combinational circuits. A combinational
logic circuit is one where the output or outputs depend upon the present state of combination of
the logic inputs. The logic gates discussed in Chapter 4 constitute the most fundamental building
block of a combinational circuit. More complex combinational circuits such as adders and subtractors,
multiplexers and demultiplexers, magnitude comparators, etc., can be implemented using a combination
of logic gates. However, the aforesaid combinational logic functions and many more, including more
complex ones, are available in monolithic IC form. A still more complex combinational circuit may
be implemented using a combination of these functions available in IC form. In this chapter, we
will cover devices used to perform arithmetic and other related operations. These include adders,
subtractors, magnitude comparators and look-ahead carry generators. Particular emphasis is placed
upon the functioning and design of these combinational circuits. The text has been adequately
illustrated with the help of a large number of solved problems, the majority of which are design
oriented.

7.1 Combinational Circuits
A combinational circuit is one where the output at any time depends only on the present combination
of inputs at that point of time with total disregard to the past state of the inputs. The logic gate is the
most basic building block of combinational logic. The logical function performed by a combinational
circuit is fully defined by a set of Boolean expressions. The other category of logic circuits, called
sequential logic circuits, comprises both logic gates and memory elements such as flip-flops. Owing to
the presence of memory elements, the output in a sequential circuit depends upon not only the present
but also the past state of inputs. Basic building blocks of sequential logic circuits are described in
detail in Chapters 10 and 11.

Figure 7.1 shows the block schematic representation of a generalized combinational circuit having
n input variables and m output variables or simply outputs. Since the number of input variables is

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

234 Digital Electronics

Combinational
Logic

'n'
Inputs

'm'
Outputs

Figure 7.1 Generalized combinational circuit.

n, there are 2n possible combinations of bits at the input. Each output can be expressed in terms of
input variables by a Boolean expression, with the result that the generalized system of Fig. 7.1 can be
expressed by m Boolean expressions. As an illustration, Boolean expressions describing the function
of a four-input OR/NOR gate are given as

Y1 �OR output� = A+B+C +D and Y2 �NOR output� = A+B+C +D

Also, each of the input variables may be available as only the normal input on the input line
designated for the purpose. In that case, the complemented input, if desired, can be generated by using
an inverter, as shown in Fig. 7.2(a), which illustrates the case of a four-input, two-output combinational
function. Also, each of the input variables may appear in two wires, one representing the normal literal
and the other representing the complemented one, as shown in Fig. 7.2(b).

In combinational circuits, input variables come from an external source and output variables feed an
external destination. Both source and destination in the majority of cases are storage registers, and these

Combinational
Logic

Combinational
Logic

(a)

(b)

Figure 7.2 Combinational circuit with normal and complemented inputs.

Arithmetic Circuits 235

Half
Adder-Subtractor

A

B

Y1
Y2

Y3

Y4

Figure 7.3 Two-input, four-output combinational circuit.

storage devices provide both normal as well as complemented outputs of the stored binary variable. As
an illustration, Fig. 7.3 shows a simple two-input (A, B�, four-output (Y1, Y2, Y3, Y4� combinational logic
circuit described by the following Boolean expressions

Y1 = A�B+A�B (7.1)

Y2 = A�B+A�B (7.2)

Y3 = A�B (7.3)

Y4 = A�B (7.4)

The implementation of these Boolean expressions needs both normal as well as complemented
inputs. Incidentally, the combinational circuit shown is that of a half-adder–subtractor, with A and B
representing the two bits to be added or subtracted and Y1� Y2, Y3, Y4 representing SUM, DIFFERENCE,
CARRY and BORROW outputs respectively. Adder and subtractor circuits are discussed in Sections
7.3, 7.4 and 7.5.

7.2 Implementing Combinational Logic
The different steps involved in the design of a combinational logic circuit are as follows:

1. Statement of the problem.
2. Identification of input and output variables.
3. Expressing the relationship between the input and output variables.
4. Construction of a truth table to meet input–output requirements.
5. Writing Boolean expressions for various output variables in terms of input variables.
6. Minimization of Boolean expressions.
7. Implementation of minimized Boolean expressions.

These different steps are self-explanatory. One or two points, however, are worth mentioning here. There
are various simplification techniques available for minimizing Boolean expressions, which have been
discussed in the previous chapter. These include the use of theorems and identities, Karnaugh mapping,
the Quinne–McCluskey tabulation method and so on. Also, there are various possible minimized forms

236 Digital Electronics

of Boolean expressions. The following guidelines should be followed while choosing the preferred
form for hardware implementation:

1. The implementation should have the minimum number of gates, with the gates used having the
minimum number of inputs.

2. There should be a minimum number of interconnections, and the propagation time should be the
shortest.

3. Limitation on the driving capability of the gates should not be ignored.

It is difficult to generalize as to what constitutes an acceptable simplified Boolean expression. The
importance of each of the above-mentioned aspects is governed by the nature of application.

7.3 Arithmetic Circuits – Basic Building Blocks
In this section, we will discuss those combinational logic building blocks that can be used to perform
addition and subtraction operations on binary numbers. Addition and subtraction are the two most
commonly used arithmetic operations, as the other two, namely multiplication and division, are
respectively the processes of repeated addition and repeated subtraction, as was outlined in Chapter
2 dealing with binary arithmetic. We will begin with the basic building blocks that form the basis of
all hardware used to perform the aforesaid arithmetic operations on binary numbers. These include
half-adder, full adder, half-subtractor, full subtractor and controlled inverter.

7.3.1 Half-Adder

A half-adder is an arithmetic circuit block that can be used to add two bits. Such a circuit thus has two
inputs that represent the two bits to be added and two outputs, with one producing the SUM output
and the other producing the CARRY. Figure 7.4 shows the truth table of a half-adder, showing all
possible input combinations and the corresponding outputs.

The Boolean expressions for the SUM and CARRY outputs are given by the equations

SUM S = A�B+A�B (7.5)

CARRY C = A�B (7.6)

An examination of the two expressions tells that there is no scope for further simplification. While
the first one representing the SUM output is that of an EX-OR gate, the second one representing the

Figure 7.4 Truth table of a half-adder.

Arithmetic Circuits 237

Figure 7.5 Logic implementation of a half-adder.

CARRY output is that of an AND gate. However, these two expressions can certainly be represented
in different forms using various laws and theorems of Boolean algebra to illustrate the flexibility that
the designer has in hardware-implementing as simple a combinational function as that of a half-adder.
We have studied in Chapter 6 on Boolean algebra how various logic gates can be implemented in the
form of either only NAND gates or NOR gates. Although the simplest way to hardware-implement a
half-adder would be to use a two-input EX-OR gate for the SUM output and a two-input AND gate
for the CARRY output, as shown in Fig. 7.5, it could also be implemented by using an appropriate
arrangement of either NAND or NOR gates. Figure 7.6 shows the implementation of a half-adder with
NAND gates only.

A close look at the logic diagram of Fig. 7.6 reveals that one part of the circuit implements
a two-input EX-OR gate with two-input NAND gates. EX-OR implementation using NAND was
discussed in the previous chapter. The AND gate required to generate CARRY output is implemented
by complementing an already available NAND output of the input variables.

7.3.2 Full Adder

A full adder circuit is an arithmetic circuit block that can be used to add three bits to produce a
SUM and a CARRY output. Such a building block becomes a necessity when it comes to adding
binary numbers with a large number of bits. The full adder circuit overcomes the limitation of the
half-adder, which can be used to add two bits only. Let us recall the procedure for adding larger
binary numbers. We begin with the addition of LSBs of the two numbers. We record the sum under
the LSB column and take the carry, if any, forward to the next higher column bits. As a result,
when we add the next adjacent higher column bits, we would be required to add three bits if there
were a carry from the previous addition. We have a similar situation for the other higher column bits

A

B

S

C

(A.B)

[A.(A .B)]

[B.(A .B)]

Figure 7.6 Half-adder implementation using NAND gates.

238 Digital Electronics

A

B

S
Full
Adder

Cin Cout

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

in SUM (S)
0
1
1
0
1
0
0
1

C
0
0
0
1
0
1
1
1

out

Figure 7.7 Truth table of a full adder.

also until we reach the MSB. A full adder is therefore essential for the hardware implementation of
an adder circuit capable of adding larger binary numbers. A half-adder can be used for addition of
LSBs only.

Figure 7.7 shows the truth table of a full adder circuit showing all possible input combinations and
corresponding outputs. In order to arrive at the logic circuit for hardware implementation of a full
adder, we will firstly write the Boolean expressions for the two output variables, that is, the SUM
and CARRY outputs, in terms of input variables. These expressions are then simplified by using any
of the simplification techniques described in the previous chapter. The Boolean expressions for the
two output variables are given in Equation (7.7) for the SUM output (S) and in Equation (6.6) for the
CARRY output (Cout�:

S = A�B�Cin +A�B�C in +A�B�C in +A�B�Cin (7.7)

Cout = A�B�Cin +A�B�Cin +A�B�C in +A�B�Cin (7.8)

The next step is to simplify the two expressions. We will do so with the help of the Karnaugh mapping
technique. Karnaugh maps for the two expressions are given in Fig. 7.8(a) for the SUM output and
Fig. 7.8(b) for the CARRY output. As is clear from the two maps, the expression for the SUM (S�
output cannot be simplified any further, whereas the simplified Boolean expression for Cout is given
by the equation

Cout = B�Cin +A�B+A�Cin (7.9)

Figure 7.9 shows the logic circuit diagram of the full adder. A full adder can also be seen to comprise
two half-adders and an OR gate. The expressions for SUM and CARRY outputs can be rewritten as
follows:

S = C in��A�B+A�B�+Cin��A�B+A�B�

S = C in��A�B+A�B�+Cin��A�B+A�B� (7.10)

Similarly, the expression for CARRY output can be rewritten as follows:

Cout = B�Cin��A+A�+A�B+A�Cin��B+B�

= A�B+A�B�Cin +A�B�Cin +A�B�Cin +A�B�Cin = A�B+A�B�Cin +A�B�Cin +A�B�Cin

= A�B��1+Cin�+Cin��A�B+A�B�

Arithmetic Circuits 239

1

1

1

1

CinCin

Cin

A B

AB

A B

(a)

A B

A B

11

CinCin

Cin

A B

AB

A B

(b)

A B

A B 1

1

Figure 7.8 Karnaugh maps for the sum and carry-out of a full adder.

Cout = A�B+Cin��A�B+A�B� (7.11)

Boolean expression (7.10) can be implemented with a two-input EX-OR gate provided that one of
the inputs is Cin and the other input is the output of another two-input EX-OR gate with A and B
as its inputs. Similarly, Boolean expression (7.11) can be implemented by ORing two minterms. One
of them is the AND output of A and B. The other is also the output of an AND gate whose inputs
are Cin and the output of an EX-OR operation on A and B. The whole idea of writing the Boolean
expressions in this modified form was to demonstrate the use of a half-adder circuit in building a full
adder. Figure 7.10(a) shows logic implementation of Equations (7.10) and (7.11). Figure 7.10(b) is
nothing but Fig. 7.10(a) redrawn with the portion of the circuit representing a half-adder replaced with a
block.

The full adder of the type described above forms the basic building block of binary adders. However,
a single full adder circuit can be used to add one-bit binary numbers only. A cascade arrangement of
these adders can be used to construct adders capable of adding binary numbers with a larger number
of bits. For example, a four-bit binary adder would require four full adders of the type shown in Fig.
7.10 to be connected in cascade. Figure 7.11 shows such an arrangement. (A3A2A1A0� and (B3B2B1B0�
are the two binary numbers to be added, with A0 and B0 representing LSBs and A3 and B3 representing
MSBs of the two numbers.

240 Digital Electronics

S

Cin

Cin

A

A

B

B

(a)

(b)

Cin
Cout

Cin

A

B

B

A

A

A
B

B

Cin

Cin

Figure 7.9 Logic circuit diagram of a full adder.

7.3.3 Half-Subtractor

We have seen in Chapter 3 on digital arithmetic how subtraction of two given binary numbers can
be carried out by adding 2’s complement of the subtrahend to the minuend. This allows us to do
a subtraction operation with adder circuits. We will study the use of adder circuits for subtraction
operations in the following pages. Before we do that, we will briefly look at the counterparts of
half-adder and full adder circuits in the half-subtractor and full subtractor for direct implementation of
subtraction operations using logic gates.

A half-subtractor is a combinational circuit that can be used to subtract one binary digit from another
to produce a DIFFERENCE output and a BORROW output. The BORROW output here specifies
whether a ‘1’ has been borrowed to perform the subtraction. The truth table of a half-subtractor, as
shown in Fig. 7.12, explains this further. The Boolean expressions for the two outputs are given by
the equations

Arithmetic Circuits 241

A

(a)

(b)

S

Cout

Cin

B

Half
Adder

Half
Adder

Cin

A

B

S

Cout

Sum

Carry

Sum

Carry

Figure 7.10 Logic implementation of a full adder with half-adders.

FA

Cout

B3

S3 S2 S1 S0

B2 B1 B0
A3 A2 A1 A0

CinFA FA FA

Figure 7.11 Four-bit binary adder.

D = A�B+A�B (7.12)

Bo = A�B (7.13)

It is obvious that there is no further scope for any simplification of the Boolean expressions given
by Equations (7.12) and (7.13). While the expression for the DIFFERENCE (D� output is that of

242 Digital Electronics

A
0
0
1
1

B
0
1
0
1

D
0
1
1
0

Bo
0
1
0
0

A

B

D=A–B
Half

Subtractor
Bo

Figure 7.12 Half-subtractor.

A

B
D=A–B

Bo

Figure 7.13 Logic diagram of a half-subtractor.

an EX-OR gate, the expression for the BORROW output (Bo� is that of an AND gate with input
A complemented before it is fed to the gate. Figure 7.13 shows the logic implementation of a
half-subtractor. Comparing a half-subtractor with a half-adder, we find that the expressions for the
SUM and DIFFERENCE outputs are just the same. The expression for BORROW in the case of
the half-subtractor is also similar to what we have for CARRY in the case of the half-adder. If
the input A, that is, the minuend, is complemented, an AND gate can be used to implement the
BORROW output. Note the similarities between the logic diagrams of Fig. 7.5 (half-adder) and Fig. 7.13
(half-subtractor).

7.3.4 Full Subtractor

A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and also takes
into consideration whether a ‘1’ has already been borrowed by the previous adjacent lower minuend bit
or not. As a result, there are three bits to be handled at the input of a full subtractor, namely the two bits
to be subtracted and a borrow bit designated as Bin. There are two outputs, namely the DIFFERENCE
output D and the BORROW output Bo. The BORROW output bit tells whether the minuend bit needs
to borrow a ‘1’ from the next possible higher minuend bit. Figure 7.14 shows the truth table of a full
subtractor.

The Boolean expressions for the two output variables are given by the equations

D = A�B�Bin +A�B�Bin +A�B�Bin +A�B�Bin (7.14)

Bo = A�B�Bin +A�B�Bin +A�B�Bin +A�B�Bin (7.15)

Arithmetic Circuits 243

Figure 7.14 Truth table of a full subtractor.

1

1

1

1

BinBin

Bin

AB

AB

AB

(a)

AB

AB

1

1

1

1

BinBin

Bin

AB

AB

AB

(b)

AB

AB

Figure 7.15 Karnaugh maps for difference and borrow outputs.

The Karnaugh maps for the two expressions are given in Fig. 7.15(a) for DIFFERENCE output D and
in Fig. 7.15(b) for BORROW output Bo. As is clear from the two Karnaugh maps, no simplification
is possible for the difference output D. The simplified expression for Bo is given by the equation

Bo = A�B+A�Bin +B�Bin (7.16)

244 Digital Electronics

(b)

D

Bo

Bin DB

A

A

Bin

B

(a)

Bo

D

D

Bo

A

B
HS

HS
A

B
Bout

Figure 7.16 Logic implementation of a full subtractor with half-subtractors.

If we compare these expressions with those derived earlier in the case of a full adder, we find that the
expression for DIFFERENCE output D is the same as that for the SUM output. Also, the expression for
BORROW output Bo is similar to the expression for CARRY-OUT Co. In the case of a half-subtractor,
the A input is complemented. By a similar analysis it can be shown that a full subtractor can be
implemented with half-subtractors in the same way as a full adder was constructed using half-adders.
Relevant logic diagrams are shown in Figs 7.16(a) and (b) corresponding to Figs 7.10(a) and (b)
respectively for a full adder.

Again, more than one full subtractor can be connected in cascade to perform subtraction on two
larger binary numbers. As an illustration, Fig. 7.17 shows a four-bit subtractor.

7.3.5 Controlled Inverter

A controlled inverter is needed when an adder is to be used as a subtractor. As outlined earlier,
subtraction is nothing but addition of the 2’s complement of the subtrahend to the minuend. Thus, the
first step towards practical implementation of a subtractor is to determine the 2’s complement of the
subtrahend. And for this, one needs firstly to find 1’s complement. A controlled inverter is used to find
1’s complement. A one-bit controlled inverter is nothing but a two-input EX-OR gate with one of its
inputs treated as a control input, as shown in Fig. 7.18(a). When the control input is LOW, the input
bit is passed as such to the output. (Recall the truth table of an EX-OR gate.) When the control input
is HIGH, the input bit gets complemented at the output. Figure 7.18(b) shows an eight-bit controlled
inverter of this type. When the control input is LOW, the output (Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0� is the same as
the input (A7 A6 A5 A4 A3 A2 A1 A0�. When the control input is HIGH, the output is 1’s complement

Arithmetic Circuits 245

FS

Bout

B3

D3 D2 D1 D0

B2 B1 B0

A3 A2 A1 A0

Bin = 0FS FS FS

Figure 7.17 Four-bit subtractor.

Figure 7.18 (a) One-bit controlled inverter and (b) eight-bit controlled inverter.

of the input. As an example, 11010010 at the input would produce 00101101 at the output when the
control input is in a logic ‘1’ state.

7.4 Adder–Subtractor
Subtraction of two binary numbers can be accomplished by adding 2’s complement of the subtrahend
to the minuend and disregarding the final carry, if any. If the MSB bit in the result of addition is

246 Digital Electronics

Figure 7.19 Four-bit adder-subtractor.

a ‘0’, then the result of addition is the correct answer. If the MSB bit is a ‘1’, this implies that the
answer has a negative sign. The true magnitude in this case is given by 2’s complement of the result of
addition.

Full adders can be used to perform subtraction provided we have the necessary additional hardware
to generate 2’s complement of the subtrahend and disregard the final carry or overflow. Figure 7.19
shows one such hardware arrangement. Let us see how it can be used to perform subtraction of two
four-bit binary numbers. A close look at the diagram would reveal that it is the hardware arrangement
for a four-bit binary adder, with the exception that the bits of one of the binary numbers are fed through
controlled inverters. The control input here is referred to as the SUB input. When the SUB input is in
logic ‘0’ state, the four bits of the binary number (B3 B2 B1 B0� are passed on as such to the B inputs of
the corresponding full adders. The outputs of the full adders in this case give the result of addition of the
two numbers. When the SUB input is in logic ‘1’ state, four bits of one of the numbers, (B3 B2 B1 B0� in
the present case, get complemented. If the same ‘1’ is also fed to the CARRY-IN of the LSB full adder,
what we finally achieve is the addition of 2’s complement and not 1’s complement. Thus, in the adder
arrangement of Fig. 7.19, we are basically adding 2’s complement of (B3 B2 B1 B0� to (A3 A2 A1 A0�. The
outputs of the full adders in this case give the result of subtraction of the two numbers. The arrangement
shown achieves A−B. The final carry (the CARRY-OUT of the MSB full adder) is ignored if it is not
displayed.

For implementing an eight-bit adder–subtractor, we will require eight full adders and eight two-input
EX-OR gates. Four-bit full adders and quad two-input EX-OR gates are individually available in
integrated circuit form. A commonly used four-bit adder in the TTL family is the type number 7483.
Also, type number 7486 is a quad two-input EX-OR gate in the TTL family. Figure 7.20 shows a
four-bit binary adder–subtractor circuit implemented with 7483 and 7486. Two each of 7483 and 7486
can be used to construct an eight-bit adder–subtractor circuit.

7.5 BCD Adder
A BCD adder is used to perform the addition of BCD numbers. A BCD digit can have any of the
ten possible four-bit binary representations, that is, 0000, 0001, � � � , 1001, the equivalent of decimal
numbers 0, 1, � � � , 9. When we set out to add two BCD digits and we assume that there is an input
carry too, the highest binary number that we can get is the equivalent of decimal number 19 (9 + 9 + 1).

Arithmetic Circuits 247

Figure 7.20 Four-bit adder-subtractor.

This binary number is going to be (10011)2. On the other hand, if we do BCD addition, we would
expect the answer to be (0001 1001)BCD. And if we restrict the output bits to the minimum required, the
answer in BCD would be (1 1001)BCD. Table 7.1 lists the possible results in binary and the expected
results in BCD when we use a four-bit binary adder to perform the addition of two BCD digits. It is
clear from the table that, as long as the sum of the two BCD digits remains equal to or less than 9, the
four-bit adder produces the correct BCD output.

The binary sum and the BCD sum in this case are the same. It is only when the sum is greater than
9 that the two results are different. It can also be seen from the table that, for a decimal sum greater
than 9 (or the equivalent binary sum greater than 1001), if we add 0110 to the binary sum, we can
get the correct BCD sum and the desired carry output too. The Boolean expression that can apply the
necessary correction is written as

C = K +Z3�Z2 +Z3�Z1 (7.17)

Equation (7.17) implies the following. A correction needs to be applied whenever K = 1. This takes
care of the last four entries. Also, a correction needs to be applied whenever both Z3 and Z2 are ‘1’.
This takes care of the next four entries from the bottom, corresponding to a decimal sum equal to

248 Digital Electronics

Table 7.1 Results in binary and the expected results in BCD using a four-bit binary adder to perform the addition
of two BCD digits.

Decimal sum Binary sum BCD sum

K Z3 Z2 Z1 Z0 C S3 S2 S1 S0

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1
2 0 0 0 1 0 0 0 0 1 0
3 0 0 0 1 1 0 0 0 1 1
4 0 0 1 0 0 0 0 1 0 0
5 0 0 1 0 1 0 0 1 0 1
6 0 0 1 1 0 0 0 1 1 0
7 0 0 1 1 1 0 0 1 1 1
8 0 1 0 0 0 0 1 0 0 0
9 0 1 0 0 1 0 1 0 0 1

10 0 1 0 1 0 1 0 0 0 0
11 0 1 0 1 1 1 0 0 0 1
12 0 1 1 0 0 1 0 0 1 0
13 0 1 1 0 1 1 0 0 1 1
14 0 1 1 1 0 1 0 1 0 0
15 0 1 1 1 1 1 0 1 0 1
16 1 0 0 0 0 1 0 1 1 0
17 1 0 0 0 1 1 0 1 1 1
18 1 0 0 1 0 1 1 0 0 0
19 1 0 0 1 1 1 1 0 0 1

12, 13, 14 and 15. For the remaining two entries corresponding to a decimal sum equal to 10 and
11, a correction is applied for both Z3 and Z1, being ‘1’. While hardware-implementing, 0110 can be
added to the binary sum output with the help of a second four-bit binary adder. The correction logic as
dictated by the Boolean expression (7.17) should ensure that (0110) gets added only when the above
expression is satisfied. Otherwise, the sum output of the first binary adder should be passed on as such
to the final output, which can be accomplished by adding (0000) in the second adder. Figure 7.21
shows the logic arrangement of a BCD adder capable of adding two BCD digits with the help of two
four-bit binary adders and some additional combinational logic.

The BCD adder described in the preceding paragraphs can be used to add two single-digit
BCD numbers only. However, a cascade arrangement of single-digit BCD adder hardware can be
used to perform the addition of multiple-digit BCD numbers. For example, an n-digit BCD adder
would require n such stages in cascade. As an illustration, Fig. 7.22 shows the block diagram of
a circuit for the addition of two three-digit BCD numbers. The first BCD adder, labelled LSD
(Least Significant Digit), handles the least significant BCD digits. It produces the sum output
(S3 S2 S1 S0�, which is the BCD code for the least significant digit of the sum. It also produces
an output carry that is fed as an input carry to the next higher adjacent BCD adder. This BCD
adder produces the sum output (S7 S6 S5 S4�, which is the BCD code for the second digit of the
sum, and a carry output. This output carry serves as an input carry for the BCD adder representing
the most significant digits. The sum outputs (S11 S10 S9 S8� represent the BCD code for the MSD of
the sum.

Arithmetic Circuits 249

Figure 7.21 Single-digit BCD adder.

Figure 7.22 Three-digit BCD adder.

250 Digital Electronics

Example 7.1

For the half-adder circuit of Fig. 7.23(a), the inputs applied at A and B are as shown in Fig. 7.23(b).
Plot the corresponding SUM and CARRY outputs on the same scale.

Solution
The SUM and CARRY waveforms can be plotted from our knowledge of the truth table of the half-
adder. All that we need to remember to solve this problem is that 0+0 yields a ‘0’ as the SUM output
and a ‘0’ as the CARRY. 0 + 1 or 1 + 0 yield ‘1’ as the SUM output and ‘0’ as the CARRY. 1 + 1
produces a ‘0’ as the SUM output and a ‘1’ as the CARRY. The output waveforms are as shown in
Fig. 7.24.

Half Adder
SA

B C

(a)

A

B

(b)

Figure 7.23 Example 7.1.

Sum-output

Carry-output

Figure 7.24 Solution to example 7.1.

Arithmetic Circuits 251

Example 7.2

Given the relevant Boolean expressions for half-adder and half-subtractor circuits, design a half-
adder–subtractor circuit that can be used to perform either addition or subtraction on two one-bit
numbers. The desired arithmetic operation should be selectable from a control input.

Solution
Boolean expressions for the half-adder and half-subtractor are given as follows:

Half-adder

SUM output= AB+AB and CARRY output= AB

Half-subtractor

DIFFERENCE output = AB+AB and BORROW output= AB

If we use a controlled inverter for complementing A in the case of the half-subtractor circuit, then
the same hardware can also be used to add two one-bit numbers. Figure 7.25 shows the logic circuit
diagram. When the control input is ‘0’, input variable A is passed uncomplemented to the input of the
NAND gate. In this case, the AND gate generates the CARRY output of the addition operation. The
EX-OR gate generates the SUM output. On the other hand, when the control input is ‘1’, the AND
gate generates the BORROW output and the EX-OR gate generates the DIFFERENCE output. Thus,
‘0’ at the control input makes it a half-adder, while ‘1’ at the control input makes it a half-subtractor.

Example 7.3

Refer to Fig. 7.26. Write the simplified Boolean expressions for DIFFERENCE and BORROW outputs.

Carry/Borrow

Sum/Difference

Control:0/1

A

B

Figure 7.25 Solution to example 7.2.

HA
A

B
C BORROW

DIFFERENCE

HS

SUM

Figure 7.26 Example 7.3.

252 Digital Electronics

Solution
Let us assume that the two inputs to the half-subtractor circuit are X and Y , with X equal to the
SUM output of the half-adder and Y equal to C. DIFFERENCE and BORROW outputs can then be
expressed as follows:

DIFFERENCE output = X ⊕Y = X�Y +X�Y and BORROW output = X�Y

Also, X = A�B+A�B and Y = C�
Substituting the values of X and Y , we obtain

DIFFERENCE output = �A�B+A�B��C + �A�B+A�B��C = �A�B+A�B��C + �A�B+A�B��C

= A�B�C +A�B�C +A�B�C +A�B�C

BORROW output = X�Y = �A�B+A�B��C = �A�B+A�B��C = A�B�C +A�B�C

Example 7.4

Design an eight-bit adder–subtractor circuit using four-bit binary adders, type number 7483, and quad
two-input EX-OR gates, type number 7486. Assume that pin connection diagrams of these ICs are
available to you.

Solution
IC 7483 is a four-bit binary adder, which means that it can add two four-bit binary numbers. In order to
add two eight-bit numbers, we need to use two 7483s in cascade. That is, the CARRY-OUT (pin 14) of
the 7483 handling less significant four bits is fed to the CARRY-IN (pin 13) of the 7483 handling more
significant four bits. Also, if (A0 � � � A7� and (B0 � � � B7� are the two numbers to be operated upon, and
if the objective is to compute A − B, bits B0, B1, B2, B3, B4, B5, B6 and B7 are complemented using
EX-OR gates. One of the inputs of all EX-OR gates is tied together to form the control input. When
the control input is in logic ‘1’ state, bits B0 to B7 get complemented. Also, feeding this logic ‘1’ to the
CARRY-IN of lower 7483 ensures that we get 2’s complement of bits (B0 � � � B7�. Therefore, when
the control input is in logic ‘1’ state, the two’s complement of (B0 � � � B7� is added to (A0 � � � A7�. The
output is therefore A−B. A logic ‘0’ at the control input allows (B0 � � � B7� to pass through EX-OR
gates uncomplemented, and the output in that case is A+B. Figure 7.27 shows the circuit diagram.

Example 7.5

The logic diagram of Fig. 7.28 performs the function of a very common arithmetic building block.
Identify the logic function.

Solution
Writing Boolean expressions for X and Y ,

X = �A�B���A�B� = �A�B+A�B� = A�B+A�B and Y = �A+B� = A�B

Boolean expressions for X and Y are those of a half-adder. X and Y respectively represent SUM and
CARRY outputs.

Arithmetic Circuits 253

Figure 7.27 Solution to example 7.4.

A

B

X

Y

Figure 7.28 Example 7.5.

Example 7.6

Design a BCD adder circuit capable of adding BCD equivalents of two-digit decimal numbers. Indicate
the IC type numbers used if the design has to be TTL logic family compatible.

Solution
The desired BCD adder is a cascaded arrangement of two stages of the type of BCD adder discussed
in the previous pages. Figure 7.29 shows the logic diagram, and it follows the generalized cascaded
arrangement discussed earlier and shown in Fig. 7.22 for a three-digit BCD adder. The BCD adder
of Fig. 7.21 can be used to add four-bit BCD equivalents of two single-digit decimal numbers. A
cascaded arrangement of two such stages, where the output C of Fig. 7.21 (CARRY-OUT) is fed to
the CARRY-IN of the second stage, is shown in Fig. 7.29. In terms of IC type numbers, IC 7483 can
be used for four-bit binary adders as shown in the diagram, IC 7408 can be used for implementing

254 Digital Electronics

Output
Carry

S7

B7B6B5B4 A7A6A5A4

7483
(4-BitBinaryAdder)

7483
(4-BitBinaryAdder)

Z7 Z6 Z5 Z4

S6 S5 S4 S3

B3 B2B1B0 A3A2A1A0

Z3 Z2 Z1 Z0

S2 S1 S0

Carry In7483
(4-BitBinaryAdder)

7483
(4-BitBinaryAdder)

Figure 7.29 Example 7.6.

the required four two-input AND gates (IC 7408 is a quad two-input AND) and IC 7432 can be used
to implement the required two three-input OR gates. IC 7432 is a quad two-input OR. Two two-input
OR gates can be connected in cascade to get a three-input OR gate.

7.6 Carry Propagation–Look-Ahead Carry Generator
The four-bit binary adder described in the previous pages can be used to add two four-bit binary
numbers. Multiple numbers of such adders are used to perform addition operations on larger-bit binary
numbers. Each of the adders is composed of four full adders (FAs) connected in cascade. The block
schematic arrangement of a four-bit adder is reproduced in Fig. 7.30(a) for reference and further
discussion. This type of adder is also called a parallel binary adder because all the bits of the augend
and addend are present and are fed to the full adder blocks simultaneously. Theoretically, the addition
operation in various full adders takes place simultaneously. What is of importance and interest to users,
more so when they are using a large number of such adders in their overall computation system, is
whether the result of addition and carry-out are available to them at the same time. In other words, we
need to see if this addition operation is truly parallel in nature. We will soon see that it is not. It is in
fact limited by what is known as carry propagation time. Refer to Figs 7.30(a) and (b). Figure 7.30(b)
shows the logic diagram of a full adder. Here, Ci and Ci+1 are the input and output CARRY; Pi and
Gi are two new binary variables called CARRY PROPAGATE and CARRY GENERATE and will be
addressed a little later.

For i=1, the diagram in Fig. 7.30(b) is that of the LSB full adder of Fig. 7.30(a). We can see here that
C2, which is the output CARRY of FA (1) and the input CARRY for FA (2), will appear at the output after
a minimum of two gate delays plus delay due to the half adder after application of Ai, Bi and Ci inputs.

Arithmetic Circuits 255

B4

C4FA
(4)

A4

S4

B3

C3FA
(3)

A3

S3

B2

C2FA
(2)

A2

S2

B1

C1FA
(1)

A1

S1C5

(a)

Ai

Bi

Ci
(b)

Ci+1

SiPi

Gi

Figure 7.30 Four-bit binary adder.

The steady state of C2 will be delayed by two gate delays after the appearance of C1. Similarly, C3 and C4

steady state will be four and six gate delays respectively after C1. And final carry C5 will appear after eight
gate delays.

Extending it a little further, let us assume that we are having a cascade arrangement of two four-bit
adders to be able to handle eight-bit numbers. Now, C5 will form the input CARRY to the second
four-bit adder. The final output CARRY C9 will now appear after 16 gate delays. This carry propagation
delay limits the speed with which two numbers are added. The outputs of any such adder arrangement
will be correct only if signals are given enough time to propagate through gates connected between
input and output. Since subtraction is also an addition process and operations like multiplication and
division are also processes involving successive addition and subtraction, the time taken by an addition
process is very critical.

One of the possible methods for reducing carry propagation delay time is to use faster logic gates.
But then there is a limit below which the gate delay cannot be reduced. There are other hardware-
related techniques, the most widely used of which is the concept of look-ahead carry. This concept
attempts to look ahead and generate the carry for a certain given addition operation that would

256 Digital Electronics

otherwise have resulted from some previous operation. In order to explain the concept, let us define
two new binary variables: Pi called CARRY PROPAGATE and Gi called CARRY GENERATE.
Binary variable Gi is so called as it generates a carry whenever Ai and Bi are ‘1’. Binary variable
Pi is called CARRY PROPAGATE as it is instrumental in propagation of Ci to Ci+1. CARRY,
SUM, CARRY GENERATE and CARRY PROPAGATE parameters are given by the following
expressions:

Pi = Ai ⊕Bi (7.18)

Gi = Ai�Bi (7.19)

Si = Pi ⊕Ci (7.20)

Ci+1 = Pi�Ci +Gi (7.21)

In the next step, we write Boolean expressions for the CARRY output of each full adder stage in the
four-bit binary adder. We obtain the following expressions:

C2 = G1 +P1�C1 (7.22)

C3 = G2 +P2�C2 = G2 +P2��G1 +P1�C1� = G2 +P2�G1 +P1�P2�C1 (7.23)

C4 = G3 +P3�C3 = G3 +P3��G2 +P2�G1 +P1�P2�C1�

C4 = G3 +P3�G2 +P3�P2�G1 +P1�P2�P3�C1 (7.24)

From the expressions for C2, C3 and C4 it is clear that C4 need not wait for C3 and C2 to propagate.
Similarly, C3 does not wait for C2 to propagate. Hardware implementation of these expressions gives
us a kind of look-ahead carry generator. A look-ahead carry generator that implements the above
expressions using AND-OR logic is shown in Fig. 7.31.

Figure 7.32 shows the four-bit adder with the look-ahead carry concept incorporated. The block
labelled look-ahead carry generator is similar to that shown in Fig. 7.31. The logic gates shown to the
left of the block represent the input half-adder portion of various full adders constituting the four-bit
adder. The EX-OR gates shown on the right are a portion of the output half-adders of various full
adders.

All sum outputs in this case will be available at the output after a delay of two levels of logic
gates. 74182 is a typical look-ahead carry generator IC of the TTL logic family. This IC can be
used to generate relevant carry inputs for four four-bit binary adders connected in cascade to perform
operation on two 16-bit numbers. Of course, the four-bit adders should be of the type so as to produce
CARRY GENERATE and CARRY PROPAGATE outputs. Figure 7.33 shows the arrangement. In
the figure shown, Cn is the CARRY input, G0, G1, G2 and G3 are CARRY GENERATE inputs
for 74182 and P0, P1, P2 and P3 are CARRY PROPAGATE inputs for 74182. Cn+x, Cn+y and
Cn+z are the CARRY outputs generated by 74182 for the four-bit adders. The G and P outputs
of 74182 need to be cascaded. Figure 7.34 shows the arrangement needed for adding two 64-bit
numbers.

Arithmetic Circuits 257

C4

C3

C2

P3
G3

P2

G2

P1

G1

C1

Figure 7.31 Look-ahead carry generator.

Example 7.7

If the CARRY GENERATE Gi and CARRY PROPAGATE Pi are redefined as Pi = �Ai + Bi) and
Gi = AiBi� show that the CARRY output Ci+1 and the SUM output Si of a full adder can be expressed
by the following Boolean functions:

Ci+1 = �Ci�Gi +Pi� = Gi +Pi�Ci and Si = �Pi�Gi�⊕Ci

Solution

Ci+1 = �Ci�Gi +Pi� = �Ci��Ai�Bi�+ �Ai +Bi��

= �Ci��Ai�Bi���Ai +Bi��

258 Digital Electronics

Figure 7.32 Four-bit full adder with a look-ahead carry generator.

= �Ci +Ai�Bi���Ai +Bi� = Ci��Ai +Bi�+Ai�Bi��Ai +Bi�
= Ci��Ai +Bi�+Ai�Bi = Pi�Ci +Gi

Si = �Ai ⊕Bi�⊕Ci = �Ai�Bi +Ai�Bi�⊕Ci

Also

�Pi�Gi�⊕Ci = ��Ai +Bi���Ai�Bi��⊕Ci

= ��Ai +Bi���Ai +Bi��⊕Ci = �Ai�Bi +Ai�Bi�⊕Ci

Therefore, Si = �Pi�Gi�⊕Ci.

Arithmetic Circuits 259

Figure 7.33 IC 74182 interfaced with four four-bit adders.

Figure 7.34 Look-ahead carry generation for adding 64-bit numbers.

260 Digital Electronics

7.7 Arithmetic Logic Unit (ALU)
The arithmetic logic unit (ALU) is a digital building block capable of performing both arithmetic as
well as logic operations. Arithmetic logic units that can perform a variety of arithmetic operations
such as addition, subtraction, etc., and logic functions such as ANDing, ORing, EX-ORing, etc., on
two four-bit numbers are usually available in IC form. The function to be performed is selectable from
function select pins. Some of the popular type numbers of ALU include 74181, 74381, 74382, 74582
(all from the TTL logic family) and 40181 (from the CMOS logic family). Functional details of these
ICs are given in the latter part of the chapter under the heading of Application-Relevant Information.
More than one such IC can always be connected in cascade to perform arithmetic and logic operations
on larger bit numbers.

7.8 Multipliers
Multiplication of binary numbers is usually implemented in microprocessors and microcomputers by
using repeated addition and shift operations. Since the binary adders are designed to add only two
binary numbers at a time, instead of adding all the partial products at the end, they are added two
at a time and their sum is accumulated in a register called the accumulator register. Also, when the
multiplier bit is ‘0’, that very partial product is ignored, as an all ‘0’ line does not affect the final result.
The basic hardware arrangement of such a binary multiplier would comprise shift registers for the
multiplicand and multiplier bits, an accumulator register for storing partial products, a binary parallel
adder and a clock pulse generator to time various operations.

Figure 7.35 4 × 4 bit multiplier.

Arithmetic Circuits 261

Binary multipliers are also available in IC form. Some of the popular type numbers in the TTL
family include 74261 which is a 2 × 4 bit multiplier (a four-bit multiplicand designated as B0,B1,B2,
B3 and B4, and a two-bit multiplier designated as M0, M1 and M2�.

The MSBs B4 and M2 are used to represent signs. 74284 and 74285 are 4 × 4 bit multipliers. They
can be used together to perform high-speed multiplication of two four-bit numbers. Figure 7.35 shows
the arrangement. The result of multiplication is often required to be stored in a register. The size of
this register (accumulator) depends upon the number of bits in the result, which at the most can be
equal to the sum of the number of bits in the multiplier and multiplicand. Some multiplier ICs have
an in-built register.

Many microprocessors do not have in their ALU the hardware that can perform multiplication
or other complex arithmetic operations such as division, determining the square root, trigonometric
functions, etc. These operations in these microprocessors are executed through software. For
example, a multiplication operation may be accomplished by using a software program that does
multiplication through repeated execution of addition and shift instructions. Other complex operations
mentioned above can also be executed with similar programs. Although the use of software reduces
the hardware needed in the microprocessor, the computation time in general is higher in the
case of software-executed operations when compared with the use of hardware to perform those
operations.

7.9 Magnitude Comparator
A magnitude comparator is a combinational circuit that compares two given numbers and determines
whether one is equal to, less than or greater than the other. The output is in the form of three binary
variables representing the conditions A = B�A > B and A < B, if A and B are the two numbers being
compared. Depending upon the relative magnitude of the two numbers, the relevant output changes
state. If the two numbers, let us say, are four-bit binary numbers and are designated as (A3 A2 A1 A0�
and (B3 B2 B1 B0�, the two numbers will be equal if all pairs of significant digits are equal, that is,
A3 = B3, A2 = B2�A1 = B1 and A0 = B0. In order to determine whether A is greater than or less than
B� we inspect the relative magnitude of pairs of significant digits, starting from the most significant
position. The comparison is done by successively comparing the next adjacent lower pair of digits if
the digits of the pair under examination are equal. The comparison continues until a pair of unequal
digits is reached. In the pair of unequal digits, if Ai = 1 and Bi = 0, then A > B, and if Ai = 0,
Bi = 1 then A < B. If X, Y and Z are three variables respectively representing the A = B, A > B
and A < B conditions, then the Boolean expression representing these conditions are given by the
equations

X = x3�x2�x1�x0 where xi = Ai�Bi +Ai�Bi (7.25)

Y = A3�B3 +x3�A2�B2 +x3�x2�A1�B1 +x3�x2�x1�A0�B0 (7.26)

Z = A3�B3 +x3�A2�B2 +x3�x2�A1�B1 +x3�x2�x1�A0�B0 (7.27)

Let us examine equation (7.25). x3 will be ‘1’ only when both A3 and B3 are equal. Similarly, conditions
for x2, x1 and x0 to be ‘1’ respectively are equal A2 and B2, equal A1 and B1 and equal A0 and B0.
ANDing of x3, x2, x1 and x0 ensures that X will be ‘1’ when x3, x2, x1 and x0 are in the logic ‘1’
state. Thus, X = 1 means that A = B. On similar lines, it can be visualized that equations (7.26) and

262 Digital Electronics

Figure 7.36 Four-bit magnitude comparator.

(7.27) respectively represent A > B and A < B conditions. Figure 7.36 shows the logic diagram of a
four-bit magnitude comparator.

Magnitude comparators are available in IC form. For example, 7485 is a four-bit magnitude
comparator of the TTL logic family. IC 4585 is a similar device in the CMOS family. 7485 and 4585
have the same pin connection diagram and functional table. The logic circuit inside these devices
determines whether one four-bit number, binary or BCD, is less than, equal to or greater than a
second four-bit number. It can perform comparison of straight binary and straight BCD (8-4-2-1)
codes. These devices can be cascaded together to perform operations on larger bit numbers without the
help of any external gates. This is facilitated by three additional inputs called cascading or expansion
inputs available on the IC. These cascading inputs are also designated as A = B, A > B and A < B
inputs. Cascading of individual magnitude comparators of the type 7485 or 4585 is discussed in the
following paragraphs. IC 74AS885 is another common magnitude comparator. The device is an eight-
bit magnitude comparator belonging to the advanced Schottky TTL family. It can perform high-speed
arithmetic or logic comparisons on two eight-bit binary or 2’s complement numbers and produces two
fully decoded decisions at the output about one number being either greater than or less than the other.
More than one of these devices can also be connected in a cascade arrangement to perform comparison
of numbers of longer lengths.

Arithmetic Circuits 263

7.9.1 Cascading Magnitude Comparators

As outlined earlier, magnitude comparators available in IC form are designed in such a way that
they can be connected in a cascade arrangement to perform comparison operations on numbers of
longer lengths. In cascade arrangement, the A = B, A > B and A < B outputs of a stage handling
less significant bits are connected to corresponding inputs of the next adjacent stage handling more
significant bits. Also, the stage handling least significant bits must have a HIGH level at the A = B
input. The other two cascading inputs (A > B and A < B� may be connected to a LOW level. We
will illustrate the concept by showing the arrangement of an eight-bit magnitude comparator using two
four-bit magnitude comparators of the type 7485 or 4585. Figure 7.37 shows the cascaded arrangement
of the two comparators. We can see the three comparison outputs of the comparator handling less
significant four bits of the two numbers being connected to the corresponding cascading inputs of the
comparator handling more significant four bits of the two numbers. Also, cascading inputs of the less
significant comparator have been connected to a HIGH or LOW level as per the guidelines mentioned
in the previous paragraph.

Operation of this circuit can be explained by considering the functional table of IC 7485 or IC 4585
as shown in Table 7.2. The two numbers being compared here are (A7 � � � A0) and (B7 � � � B0�. The
less significant comparator handles (A3, A2, A1, A0� and (B3, B2, B1, B0�, and the more significant
comparator handles (A7, A6, A5, A4� and (B7, B6, B5, B4�. Let us take the example of the two numbers
being such that A7 > B7. From the first-row entry of the function table it is clear that, irrespective
of the status of other bits of the more significant comparator, and also regardless of the status of its
cascading inputs, the final output produces a HIGH at the A > B output and a LOW at the A < B and
A = B outputs. Since the status of cascading inputs of the more significant comparator depends upon
the status of comparison bits of the less significant comparator, the cascade arrangement produces the
correct output for A7 > B7 regardless of the status of all other comparison bits. On similar lines, the
circuit produces a valid output for any given status of comparison bits.

Example 7.8

Design a two-bit magnitude comparator. Also, write relevant Boolean expressions.

Figure 7.37 Cascading of individual magnitude comparators.

264 Digital Electronics

Table 7.2 Functional table of IC 7485 or IC 4585.

Comparison inputs Cascading inputs Outputs

A3,B3 A2,B2 A1,B1 A0,B0 A > B A < B A=B A > B A < B A=B

A3 > B3 X X X X X X HIGH LOW LOW
A3 < B3 X X X X X X LOW HIGH LOW
A3 = B3 A2 > B2 X X X X X HIGH LOW LOW
A3 = B3 A2 < B2 X X X X X LOW HIGH LOW
A3 = B3 A2 = B2 A1 > B1 X X X X HIGH LOW LOW
A3 = B3 A2 = B2 A1 < B1 X X X X LOW HIGH LOW
A3 = B3 A2 = B2 A1 = B1 A0 > B0 X X X HIGH LOW LOW
A3 = B3 A2 = B2 A1 = B1 A0 < B0 X X X LOW HIGH LOW
A3 = B3 A2 = B2 A1 = B1 A0 = B0 HIGH LOW LOW HIGH LOW LOW
A3 = B3 A2 = B2 A1 = B1 A0 = B0 LOW HIGH LOW LOW HIGH LOW
A3 = B3 A2 = B2 A1 = B1 A0 = B0 LOW LOW HIGH LOW LOW HIGH
A3 = B3 A2 = B2 A1 = B1 A0 = B0 X X HIGH LOW LOW HIGH
A3 = B3 A2 = B2 A1 = B1 A0 = B0 HIGH HIGH LOW LOW LOW LOW
A3 = B3 A2 = B2 A1 = B1 A0 = B0 LOW LOW LOW HIGH HIGH LOW

Solution
Let A�A1A0� and B �B1B0� be the two numbers. If X, Y and Z represent the conditions A = B�A > B
and A < B respectively (that is, X = 1, Y = 0 and Z = 0 for A =B; X= 0, Y = 1 and Z = 0 for
A > B; and X = 0, Y = 0 and Z = 1 for A < B), then expressions for X, Y and Z can be written as
follows:

X = x1.x0 where x1 = A1�B1 +A1�B1 and x0 = A0�B0 +A0�B0

Y = A1�B1 +x1�A0�B0

Z = A1�B1 +x1�A0�B0

Figure 7.38 shows the logic diagram of the two-bit comparator.

Example 7.9

Hardware-implement a three-bit magnitude comparator having one output that goes HIGH when the
two three-bit numbers are equal. Use only NAND gates.

Solution
The equivalence condition of the two three-bit numbers is given by the equation X = x2.x1.x0, where
x2 = A2�B2 +A2�B2, x1 = A1�B1 +A1�B1 and x0 = A0�B0 +A0�B0.

Figure 7.39 shows the logic diagram. x2, x1 and x0 are respectively given by EX-NOR operation of
(A2, B2�, (A1, B1� and (A0, B0�. These are then ANDed to get X.

Arithmetic Circuits 265

A1

X(A=B)

B1

A0
B0

Y(A>B)

Z(A<B)

X1

Figure 7.38 Solution to example 7.8.

Figure 7.39 Solution to example 7.9.

266 Digital Electronics

Table 7.3 Commonly used IC type numbers used for arithmetic operations.

IC type Function Logic
number family

7483 Four-bit full adder TTL
7485 Four-bit magnitude comparator TTL
74181 Four-Bit ALU and function generator TTL
74182 Look-ahead carry generator TTL
74183 Dual carry save full adder TTL
74283 Four-bit full binary adder TTL
74885 Eight-bit magnitude comparator TTL
4008 Four-bit binary full adder CMOS
4527 BCD rate multiplier CMOS
4585 Four-bit magnitude comparator CMOS
40181 Four-bit arithmetic logic unit CMOS
40182 Look-ahead carry generator CMOS
10179 Look-ahead carry block ECL
10180 Dual high-speed two-bit adder/subtractor ECL
10181 Four-bit arithmetic logic unit/function generator ECL
10182 Four-bit arithmetic logic unit/function generator ECL
10183 4 × 2 multiplier ECL

7.10 Application-Relevant Information
Table 7.3 lists commonly used IC type numbers used for arithmetic operations. Application-relevant
information such as pin connection diagrams, truth tables, etc., in respect of the more popular of these
type numbers is given on the companion website.

Review Questions
1. How do you characterize or define a combinational circuit? How does it differ from a sequential

circuit? Give two examples each of combinational and sequential logic devices.
2. Beginning with the statement of the problem, outline different steps involved in the design of a

suitable combinational logic circuit to implement the hardware required to solve the given problem.
3. Write down Boolean expressions representing the SUM and CARRY outputs in terms of three input

binary variables to be added. Design a suitable combinational circuit to hardware-implement the
design using NAND gates only.

4. Draw the truth table of a full subtractor circuit. Write a minterm Boolean expression for
DIFFERENCE and BORROW outputs in terms of minuend variable, subtrahend variable and
BORROW-IN. Minimize the expressions and implement them in hardware.

5. Draw the logic diagram of a three-digit BCD adder and briefly describe its functional principle.
6. Briefly describe the concept of look-ahead carry generation with respect to its use in adder circuits.

What is its significance while implementing hardware for addition of binary numbers of longer
lengths?

7. With the help of a block schematic of the logic circuit, briefly describe how individual four-bit
magnitude comparators can be used in a cascade arrangement to perform magnitude comparison of
binary numbers of longer lengths.

Arithmetic Circuits 267

Problems
1. A, B, Bin, D and Bout are respectively the minuend, the subtrahend, the BORROW-IN, the

DIFFERENCE output and the BORROW-OUT in the case of a full subtractor. Determine the bit
status of D and Bout for the following values of A, B and Bin:

(a) A = 0, B = 1, Bin = 1
(b) A = 1, B = 1, Bin = 0
(c) A = 1, B = 1, Bin = 1
(d) A = 0, B = 0, Bin = 1

(a) D = 0, Bout = 1; (b) D = 0, Bout =0; (c) D = 1, Bout =1; (d) D = 1, Bout = 1

2. Determine the number of half and full adder circuit blocks required to construct a 64-bit binary
parallel adder. Also, determine the number and type of additional logic gates needed to transform
this 64-bit adder into a 64-bit adder–subtractor.

For a 64-bit adder: HA=1, FA=63

For a 64-bit adder–subtractor: HA = 1, FA = 63, EX-OR gates = 64

3. If the minuend, subtrahend and BORROW-IN bits are respectively applied to the Augend, Addend
and the CARRY-IN inputs of a full adder, prove that the SUM output of the full adder will produce
the correct DIFFERENCE output.

4. Prove that the logic diagram of Fig. 7.40 performs the function of a half-subtractor provided that Y
represents the DIFFERENCE output and X represents the BORROW output.

5. Determine the number of 7483s (four-bit binary adders) and 7486s (quad two-input EX-OR gates)
required to design a 16-bit adder–subtractor circuit.

Number of 7483 = 4; number of 7486 = 4

A

B Y

X

Figure 7.40 Problem 4.

6. The objective is to design a BCD adder circuit using four-bit binary adders and additional
combinational logic. If the decimal numbers to be added can be anywhere in the range from 0 to
9999, determine the number of four-bit binary adder circuit blocks of type IC 7483 required to do
the job.

Number of four-bit adders = 8

268 Digital Electronics

Further Reading
1. Koren, I. (2001) Computer Arithmetic Algorithms, A. K. Peters Ltd, Natick, MA, USA.
2. Ercegovac, M. D. and Lang, T. (2003) Digital Arithmetic, Morgan Kaufmann Publishers, CA, USA.
3. Rafiquzzaman, M. (2005) Fundamentals of Digital Logic and Microcomputer Design, Wiley-Interscience, New

York, USA.
4. Morris Mano, M. and Kime, C. R. (2003) Logic and Computer Design Fundamentals, Prentice-Hall, USA.
5. Tokheim, R. L. (1994) Schaum’s Outline Series of Digital Principles, McGraw-Hill Companies Inc., USA.
6. Tocci, R. J. (2006) Digital Systems – Principles and Applications, Prentice-Hall Inc., NJ, USA.
7. Malvino, A. P. and Leach, D. P. (1994) Digital Principles and Applications, McGraw-Hill Book Company,

USA.

8
Multiplexers and Demultiplexers

In the previous chapter, we described at length those combinational logic circuits that can be used
to perform arithmetic and related operations. This chapter takes a comprehensive look at yet another
class of building blocks used to design more complex combinational circuits, and covers building
blocks such as multiplexers and demultiplexers and other derived devices such as encoders and
decoders. Particular emphasis is given to the operational basics and use of these devices to design more
complex combinational circuits. Application-relevant information in terms of the list of commonly used
integrated circuits available in this category, along with their functional description is given towards
the end of the chapter. The text has been adequately illustrated with the help of a large number of
solved examples.

8.1 Multiplexer
A multiplexer or MUX, also called a data selector, is a combinational circuit with more than one
input line, one output line and more than one selection line. There are some multiplexer ICs that
provide complementary outputs. Also, multiplexers in IC form almost invariably have an ENABLE
or STROBE input, which needs to be active for the multiplexer to be able to perform its intended
function. A multiplexer selects binary information present on any one of the input lines, depending
upon the logic status of the selection inputs, and routes it to the output line. If there are n selection lines,
then the number of maximum possible input lines is 2n and the multiplexer is referred to as a 2n-to-1
multiplexer or 2n × 1 multiplexer. Figures 8.1(a) and (b) respectively show the circuit representation
and truth table of a basic 4-to-1 multiplexer.

To familiarize readers with the practical multiplexer devices available in IC form, Figs 8.2 and 8.3
respectively show the circuit representation and function table of 8-to-1 and 16-to-1 multiplexers. The
8-to-1 multiplexer of Fig. 8.2 is IC type number 74151 of the TTL family. It has an active LOW
ENABLE input and provides complementary outputs. Figure 8.3 refers to IC type number 74150 of
the TTL family. It is a 16-to-1 multiplexer with active LOW ENABLE input and active LOW output.

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

270 Digital Electronics

(a)

(b)

0

4-to-1
MUX O/P

X1 X0

Y
1

2

3

0
0
1
1

X1
0
1
0
1

X0
I0
I1
I2
I3

Y

I0

I1

I2

I3

Figure 8.1 (a) 4-to-1 multiplexer circuit representation and (b) 4-to-1 multiplexer truth table.

8-to-1
MUX

G
A
B
C

D0
D1
D2
D3
D4
D5
D6
D7

(a) (b)

W

Y

X
L
L
L
L
H
H
H
H

L
D0
D1
D2
D3
D4
D5
D6
D7

Output

Y W

Enable

G

Select

C B A

Inputs

X
L
L
H
H
L
L
H
H

X
L
H
L
H
L
H
L
H

H
L
L
L
L
L
L
L
L

H
D0
D1
D2
D3
D4
D5
D6
D7

G : ENABLE input
A, B, C : Select inputs
D0-D7 : Data inputs
Y,W : outputs

Figure 8.2 (a) 8-to-1 multiplexer circuit representation and (b) 8-to-1 multiplexer truth table.

Multiplexers and Demultiplexers 271

16-to-1
MUX

G
A
B
C
D

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

W

X
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H

X
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H

X
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H

X
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H

H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

H
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

Output
WEnable

G

Select

D C B A

Inputs

(a) (b)

Figure 8.3 (a) 16-to-1 multiplexer circuit representation and (b) 16-to-1 multiplexer truth table.

8.1.1 Inside the Multiplexer

We will briefly describe the type of combinational logic circuit found inside a multiplexer by
considering the 2-to-1 multiplexer in Fig. 8.4(a), the functional table of which is shown in Fig.
8.4(b). Figure 8.4(c) shows the possible logic diagram of this multiplexer. The circuit functions as
follows:

• For S = 0, the Boolean expression for the output becomes Y = I0.
• For S = 1, the Boolean expression for the output becomes Y = I1.

Thus, inputs I0 and I1 are respectively switched to the output for S = 0 and S = 1. Extending the
concept further, Fig. 8.5 shows the logic diagram of a 4-to-1 multiplexer. The input combinations 00,
01, 10 and 11 on the select lines respectively switch I0, I1, I2 and I3 to the output.The operation of the
circuit is governed by the Boolean function (8.1). Similarly, an 8-to-1 multiplexer can be represented
by the Boolean function (8.2):

Y = I0�S1�S0 + I1�S1�S0 + I2�S1�S0 + I3�S1�S0 (8.1)

Y = I0�S2�S1�S0 + I1�S2�S1�S0 + I2�S2�S1�S0 + I3�S2�S1�S0 + I4�S2�S1�S0

+I5�S2�S1�S0 + I6�S2�S1�S0 + I7�S2�S1�S0 (8.2)

272 Digital Electronics

2-to-1
MUX Y

S

I0

I1

(a)

0
1

S

I0
I1

Y

(b)

I1

Y
I0

S

(c)

Figure 8.4 (a) 2-to-1 multiplexer circuit representation, (b) 2-to-1 multiplexer truth table and (c) 2-to-1 multiplexer
logic diagram.

As outlined earlier, multiplexers usually have an ENABLE input that can be used to control the
multiplexing function. When this input is enabled, that is, when it is in logic ‘1’ or logic ‘0’ state,
depending upon whether the ENABLE input is active HIGH or active LOW respectively, the output
is enabled. The multiplexer functions normally. When the ENABLE input is inactive, the output is
disabled and permanently goes to either logic ‘0’ or logic ‘1’ state, depending upon whether the output
is uncomplemented or complemented. Figure 8.6 shows how the 2-to-1 multiplexer of Fig. 8.4 can
be modified to include an ENABLE input. The functional table of this modified multiplexer is also
shown in Fig. 8.6. The ENABLE input here is active when HIGH. Some IC packages have more than
one multiplexer. In that case, the ENABLE input and selection inputs are common to all multiplexers
within the same IC package. Figure 8.7 shows a 4-to-1 multiplexer with an active LOW ENABLE
input.

Multiplexers and Demultiplexers 273

Y

I0

I1

I2

I3

S1

S0

0
0
1
1

S1
0
1
0
1

S0
I0
I1
I2
I3

Y

Figure 8.5 Logic diagram of a 4-to-1 multiplexer.

I1

Y

I0

S EN

X
0
1

S

0
1
1

EN

0
I0
I1

Y

Figure 8.6 2-to-1 multiplexer with an ENABLE input.

8.1.2 Implementing Boolean Functions with Multiplexers

One of the most common applications of a multiplexer is its use for implementation of combinational
logic Boolean functions. The simplest technique for doing so is to employ a 2n-to-1 MUX to implement
an n-variable Boolean function. The input lines corresponding to each of the minterms present in the
Boolean function are made equal to logic ‘1’ state. The remaining minterms that are absent in the
Boolean function are disabled by making their corresponding input lines equal to logic ‘0’. As an
example, Fig. 8.8(a) shows the use of an 8-to-1 MUX for implementing the Boolean function given
by the equation

f�A�B�C� = ∑
2� 4� 7 (8.3)

274 Digital Electronics

Y

I0

I1

I2

I3

S1 S0 EN

X
0
0
1
1

S1
X
0
1
0
1

1
0
0
0
0

0

S0 EN

I0
I1
I2
I3

Y

Figure 8.7 4-to-1 multiplexer with an ENABLE input.

In terms of variables A, B and C, equation (8.3) can be written as follows:

f�A�B�C� = A�B�C +A�B�C +A�B�C (8.4)

As shown in Fig. 8.8, the input lines corresponding to the three minterms present in the given Boolean
function are tied to logic ‘1’. The remaining five possible minterms absent in the Boolean function are
tied to logic ‘0’.

However, there is a better technique available for doing the same. In this, a 2n-to-1 MUX can be
used to implement a Boolean function with n + 1 variables. The procedure is as follows. Out of n +
1 variables, n are connected to the n selection lines of the 2n-to-1 multiplexer. The left-over variable
is used with the input lines. Various input lines are tied to one of the following: ‘0’, ‘1’, the left-over
variable and the complement of the left-over variable. Which line is given what logic status can be
easily determined with the help of a simple procedure. The complete procedure is illustrated for the
Boolean function given by equation (8.3).

It is a three-variable Boolean function. Conventionally, we will need to use an 8-to-1 multiplexer
to implement this function. We will now see how this can be implemented with a 4-to-1 multiplexer.
The chosen multiplexer has two selection lines. The first step here is to determine the truth table of
the given Boolean function, which is shown in Table 8.1.

In the next step, two of the three variables are connected to the two selection lines, with the higher-
order variable connected to the higher-order selection line. For instance, in the present case, variables
B and C are the chosen variables for the selection lines and are respectively connected to selection
lines S1 and S0. In the third step, a table of the type shown in Table 8.2 is constructed. Under the inputs
to the multiplexer, minterms are listed in two rows, as shown. The first row lists those terms where
remaining variable A is complemented, and second row lists those terms where A is uncomplemented.
This is easily done with the help of the truth table.

The required minterms are identified or marked in some manner in this table. In the given
table, these entries have been highlighted. Each column is inspected individually. If neither minterm
of a certain column is highlighted, a ‘0’ is written below that. If both are highlighted, a ‘1’ is

Multiplexers and Demultiplexers 275

(b)

4-to-1
MUX

F

C

I0
I1
I2
I3

S1 S0

A

B

8-to-1
MUX

F

I0
I1
I2
I3
I4
I5
I6
I7

A B C

'1'

(a)

'0’

Figure 8.8 Hardware implementation of the Boolean function given by equation (8.3).

Table 8.1 Truth table.

Minterm A B C f(A,B,C)

0 0 0 0 0
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
6 1 1 0 0
7 1 1 1 1

written. If only one is highlighted, the corresponding variable (complemented or uncomplemented)
is written. The input lines are then given appropriate logic status. In the present case, I0, I1,
I2 and I3 would be connected to A, 0, A and A respectively. Figure 8.8(b) shows the logic
implementation.

276 Digital Electronics

Table 8.2 Implementation table for
multiplexers.

I0 I1 I2 I3

A 0 1 2 3
A 4 5 6 7

A 0 A A

Table 8.3 Implementation table for multiplexers.

I0 I1 I2 I3

C 0 2 4 6
C 1 3 5 7

0 C C C

It is not necessary to choose only the leftmost variable in the sequence to be used as input to
the multiplexer. Any of the variables can be used provided the implementation table is constructed
accordingly. In the problem illustrated above, A was chosen as the variable for the input lines,
and accordingly the first row of the implementation table contained those entries where ‘A’ was
complemented and the second row contained those entries where A was uncomplemented. If we
consider C as the left-out variable, the implementation table will be as shown in Table 8.3.

Figure 8.9 shows the hardware implementation. For the case of B being the left-out variable, the
implementation table is shown in Table 8.4 and the hardware implementation is shown in Fig. 8.10.

4-to-1
MUX

F

A B

I0
I1
I2
I3

S1 S0C

'0’

Figure 8.9 Hardware implementation using a 4-to-1 multiplexer.

Table 8.4 Implementation table for multiplexers.

I0 I1 I2 I3

B 0 1 4 5
B 2 3 6 7

B 0 B B

Multiplexers and Demultiplexers 277

B

F

I0
I1
I2
I3

S1 S0

A C

4-to-1
MUX

'0’

Figure 8.10 Hardware implementation using a 4-to-1 multiplexer.

Figure 8.11 Multiplexer for parallel-to-serial conversion.

8.1.3 Multiplexers for Parallel-to-Serial Data Conversion

Although data are processed in parallel in many digital systems to achieve faster processing speeds,
when it comes to transmitting these data relatively large distances, this is done serially. The parallel
arrangement in this case is highly undesirable as it would require a large number of transmission
lines. Multiplexers can possibly be used for parallel-to-serial conversion. Figure 8.11 shows one such
arrangement where an 8-to-1 multiplexer is used to convert eight-bit parallel binary data to serial
form. A three-bit counter controls the selection inputs. As the counter goes through 000 to 111, the
multiplexer output goes through I0 to I7. The conversion process takes a total of eight clock cycles. In
the figure shown, the three-bit counter has been constructed with the help of three toggle flip-flops.
A variety of counter circuits of various types and complexities are, however, available in IC form.
Flip-flops and counters are discussed in detail in Chapters 10 and 11 respectively.

Example 8.1

Implement the product-of-sums Boolean function expressed by �1,2,5 by a suitable multiplexer.

278 Digital Electronics

Solution
• Let the Boolean function be f�A�B�C� = ∏

1� 2� 5.
• The equivalent sum-of-products expression can be written as f�A�B�C� = ∑

0� 3� 4� 6� 7.

The truth table for the given Boolean function is given in Table 8.5. The given function can be
implemented with a 4-to-1 multiplexer with two selection lines. Variables A and B are chosen for the
selection lines. The implementation table as drawn with the help of the truth table is given in Table 8.6.
Figure 8.12 shows the hardware implementation.

Table 8.5 Truth table.

C B A f(A,B,C)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Table 8.6 Implementation table.

I0 I1 I2 I3

C 0 1 2 3
C 4 5 6 7

1 0 C 1

4-to-1
MUX

F

A

B

I0
I1
I2
I3

S1 S0

C
Y

'0’

'1’

Figure 8.12 Example 8.1.

Multiplexers and Demultiplexers 279

8-to-1
MUX

S2

I0 I2 I3

S1
S0

I1 I4 I5 I6 I7

A

B

C

D

1

Y

Figure 8.13 Example 8.2.

Example 8.2

Figure 8.13 shows the use of an 8-to-1 multiplexer to implement a certain four-variable Boolean
function. From the given logic circuit arrangement, derive the Boolean expression implemented by the
given circuit.

Solution
This problem can be solved by simply working backwards in the procedure outlined earlier for designing
the multiplexer-based logic circuit for a given Boolean function. Here, the hardware implementation
is known and the objective is to determine the corresponding Boolean expression.

From the given logic circuit, we can draw the implementation table as given in Table 8.7. The
entries in the first row (0, 1, 2, 3, 4, 5, 6, 7) and the second row (8, 9, 10, 11, 12, 13, 14, 15) are
so because the selection variable chosen for application to the inputs is the MSB variable D. Entries
in the first row include all those minterms that contain D, and entries in the second row include all
those minterms that contain D. After writing the entries in the first two rows, the entries in the third
row can be filled in by examining the logic status of different input lines in the given logic circuit
diagram. Having completed the third row, relevant entries in the first and second rows are highlighted.
The Boolean expression can now be written as follows:

Y = ∑
2� 4� 9� 10 = D�C�B�A+D�C�B�A+D�C�B�A+D�C�B�A

= C�B�A��D+D�+D�C�B�A+D�C�B�A

= C�B�A+D�C�B�A+D�C�B�A

Table 8.7 Implementation table.

I0 I1 I2 I3 I4 I5 I6 I7

D 0 1 2 3 4 5 6 7
D 8 9 10 11 12 13 14 15

0 D 1 0 D 0 0 0

280 Digital Electronics

8.1.4 Cascading Multiplexer Circuits

There can possibly be a situation where the desired number of input channels is not available in IC
multiplexers. A multiple number of devices of a given size can be used to construct multiplexers that
can handle a larger number of input channels. For instance, 8-to-1 multiplexers can be used to construct
16-to-1 or 32-to-1 or even larger multiplexer circuits. The basic steps to be followed to carry out the
design are as follows:

1. If 2n is the number of input lines in the available multiplexer and 2N is the number of input lines in
the desired multiplexer, then the number of individual multiplexers required to construct the desired
multiplexer circuit would be 2N−n.

2. From the knowledge of the number of selection inputs of the available multiplexer and that of the
desired multiplexer, connect the less significant bits of the selection inputs of the desired multiplexer
to the selection inputs of the available multiplexer.

3. The left-over bits of the selection inputs of the desired multiplexer circuit are used to enable or
disable the individual multiplexers so that their outputs when ORed produce the final output. The
procedure is illustrated in solved example 8.3.

Example 8.3

Design a 16-to-1 multiplexer using two 8-to-1 multiplexers having an active LOW ENABLE input.

Solution
A 16-to-1 multiplexer can be constructed from two 8-to-1 multiplexers having an ENABLE
input. The ENABLE input is taken as the fourth selection variable occupying the MSB position.
Figure 8.14 shows the complete logic circuit diagram. IC 74151 can be used to implement an 8-to-1
multiplexer.

The circuit functions as follows. When S3 is in logic ‘0’ state, the upper multiplexer is enabled and
the lower multiplexer is disabled. If we recall the truth table of a four-variable Boolean function, S3

would be ‘0’ for the first eight entries and ‘1’ for the remaining eight entries. Therefore, when S3 = 0
the final output will be any of the inputs from D0 to D7, depending upon the logic status of S2, S1 and
S0. Similarly, when S3 = 1 the final output will be any of the inputs from D8 to D15, again depending
upon the logic status of S2, S1 and S0. The circuit therefore implements the truth table of a 16-to-1
multiplexer.

8.2 Encoders
An encoder is a multiplexer without its single output line. It is a combinational logic function that has
2n (or fewer) input lines and n output lines, which correspond to n selection lines in a multiplexer.
The n output lines generate the binary code for the possible 2n input lines. Let us take the case of an
octal-to-binary encoder. Such an encoder would have eight input lines, each representing an octal digit,
and three output lines representing the three-bit binary equivalent. The truth table of such an encoder
is given in Table 8.8. In the truth table, D0 to D7 represent octal digits 0 to 7. A, B and C represent
the binary digits.

Multiplexers and Demultiplexers 281

8-to-1
MUX

I0
I1

I7

D0
D1
D2
D3
D4
D5
D6
D7

S0

S1

S2

8-to-1
MUX

I0
I1

I7

D8
D9

D10
D11
D12
D13
D14
D15

S0

S1

S2

E

ES3

S2
S1
S0

Y

Y

F

Figure 8.14 Example 8.3.

The eight input lines would have 28 = 256 possible combinations. However, in the case of an
octal-to-binary encoder, only eight of these 256 combinations would have any meaning. The remaining
combinations of input variables are ‘don’t care’ input combinations. Also, only one of the input lines
at a time is in logic ‘1’ state. Figure 8.15 shows the hardware implementation of the octal-to-binary
encoder described by the truth table in Table 8.8. This circuit has the shortcoming that it produces an
all 0s output sequence when all input lines are in logic ‘0’ state. This can be overcome by having an
additional line to indicate an all 0s input sequence.

8.2.1 Priority Encoder

A priority encoder is a practical form of an encoder. The encoders available in IC form are all
priority encoders. In this type of encoder, a priority is assigned to each input so that, when more
than one input is simultaneously active, the input with the highest priority is encoded. We will
illustrate the concept of priority encoding with the help of an example. Let us assume that the octal-
to-binary encoder described in the previous paragraph has an input priority for higher-order digits.
Let us also assume that input lines D2, D4 and D7 are all simultaneously in logic ‘1’ state. In
that case, only D7 will be encoded and the output will be 111. The truth table of such a priority

282 Digital Electronics

A

B

C

D0 D1 D2 D3 D4 D5 D6 D7

Figure 8.15 Octal-to-binary encoder.

Table 8.8 Truth table of an encoder.

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

encoder will then be modified to what is shown in Table 8.9. Looking at the last row of the
table, it implies that, if D7 = 1, then, irrespective of the logic status of other inputs, the output is
111 as D7 will only be encoded. As another example, Fig. 8.16 shows the logic symbol and truth
table of a 10-line decimal to four-line BCD encoder providing priority encoding for higher-order
digits, with digit 9 having the highest priority. In the functional table shown, the input line with
highest priority having a LOW on it is encoded irrespective of the logic status of the other input
lines.

Multiplexers and Demultiplexers 283

Table 8.9 Priority encoder.

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0
X 1 0 0 0 0 0 0 0 0 1
X X 1 0 0 0 0 0 0 1 0
X X X 1 0 0 0 0 0 1 1
X X X X 1 0 0 0 1 0 0
X X X X X 1 0 0 1 0 1
X X X X X X 1 0 1 1 0
X X X X X X X 1 1 1 1

Figure 8.16 10-line decimal to four-line BCD priority encoder.

Some of the encoders available in IC form provide additional inputs and outputs to allow expansion.
IC 74148, which is an eight-line to three -line priority encoder, is an example. ENABLE-IN (EI) and
ENABLE-OUT (EO) terminals on this IC allow expansion. For instance, two 74148s can be cascaded
to build a 16-line to four-line priority encoder.

284 Digital Electronics

Example 8.4

We have an eight-line to three-line priority encoder circuit with D0�D1�D2�D3�D4�D5�D6 and D7 as
the data input lines. the output bits are A (MSB), B and C (LSB). Higher-order data bits have been
assigned a higher priority, with D7 having the highest priority. If the data inputs and outputs are active
when LOW, determine the logic status of output bits for the following logic status of data inputs:

(a) All inputs are in logic ‘0’ state.
(b) D1 to D 4 are in logic ‘1’ state and D5 to D7 are in logic ‘0’ state.
(c) D7 is in logic ‘0’ state. The logic status of the other inputs is not known.

Solution
(a) Since all inputs are in logic ‘0’ state, it implies that all inputs are active. Since D7 has the highest

priority and all inputs and outputs are active when LOW, the output bits are A = 0, B = 0 and
C = 0.

(b) Inputs D5 to D7 are the ones that are active. among these, D7 has the highest priority. Therefore,
the output bits are A = 0, B = 0 and C = 0.

(c) D7 is active. Since D7 has the highest priority, it will be encoded irrespective of the logic status
of other inputs. Therefore, the output bits are A = 0, B = 0 and C = 0.

Example 8.5

Design a four-line to two-line priority encoder with active HIGH inputs and outputs, with priority
assigned to the higher-order data input line.

Solution
The truth table for such a priority encoder is given in Table 8.10, with D0, D1, D2 and D3 as data
inputs and X and Y as outputs.

The Boolean expressions for the two output lines X and Y are given by the equations

X = D2�D3 +D3 = D2 +D3 (8.5)

Y = D1�D2�D3 +D3 = D1�D2 +D3 (8.6)

Figure 8.17 shows the logic diagram that implements the Boolean functions given in equations (8.5)
and (8.6).

Table 8.10 Example 8.5.

D0 D1 D2 D3 X Y

1 0 0 0 0 0
X 1 0 0 0 1
X X 1 0 1 0
X X X 1 1 1

Multiplexers and Demultiplexers 285

X

D1

D3

D2

Y

Figure 8.17 Example 8.5.

8.3 Demultiplexers and Decoders
A demultiplexer is a combinational logic circuit with an input line, 2n output lines and n select lines. It
routes the information present on the input line to any of the output lines. The output line that gets the
information present on the input line is decided by the bit status of the selection lines. A decoder is a
special case of a demultiplexer without the input line. Figure 8.18(a) shows the circuit representation
of a 1-to-4 demultiplexer. Figure 8.18(b) shows the truth table of the demultiplexer when the input
line is held HIGH.

A decoder, as mentioned earlier, is a combinational circuit that decodes the information on n input
lines to a maximum of 2n unique output lines. Figure 8.19 shows the circuit representation of 2-to-4,
3-to-8 and 4-to-16 line decoders. If there are some unused or ‘don’t care’ combinations in the n-bit
code, then there will be fewer than 2n output lines. As an illustration, if there are three input lines, it

(b)

I/P

1
1
1
1

A
0
0
1
1

B
0
1
0
1

D0
1
0
0
0

D1
0
1
0
0

D2
0
0
1
0

D3
0
0
0
1

1-to-4
DEMUX

I/P line

A B

D0
D1
D2
D3

Select O/P

(a)

Figure 8.18 1-to-4 demultiplexer.

286 Digital Electronics

0
1
2
3

2-to-4

A

B

0
1

7

3-to-8

A

B

C

0
1

15

4-to-16

A

B
C
D

Figure 8.19 Circuit representation of 2-to-4, 3-to-8 and 4-to-16 line decoders.

can have a maximum of eight unique output lines. If, in the three-bit input code, the only used three-bit
combinations are 000, 001, 010, 100, 110 and 111 (011 and 101 being either unused or don’t care
combinations), then this decoder will have only six output lines. In general, if n and m are respectively
the numbers of input and output lines, then m ≤ 2n.

A decoder can generate a maximum of 2n possible minterms with an n-bit binary code. In order
to illustrate further the operation of a decoder, consider the logic circuit diagram in Fig. 8.20. This
logic circuit, as we will see, implements a 3-to-8 line decoder function. This decoder has three inputs
designated as A, B and C and eight outputs designated as D0, D1, D2, D3, D4, D5, D6 and D7. From
the truth table given along with the logic diagram it is clear that, for any given input combination,
only one of the eight outputs is in logic ‘1’ state. Thus, each output produces a certain minterm that
corresponds to the binary number currently present at the input. In the present case, D0, D1, D2, D3,
D4, D5, D6 and D7 respectively represent the following minterms:

D0 → A�B�C�D1 → A�B�C�D2 → A�B�C�D3 → A�B�C

D4 → A�B�C�D5 → A�B�C�D6 → A�B�C�D7 → A�B�C

8.3.1 Implementing Boolean Functions with Decoders

A decoder can be conveniently used to implement a given Boolean function. The decoder generates
the required minterms and an external OR gate is used to produce the sum of minterms. Figure 8.21
shows the logic diagram where a 3-to-8 line decoder is used to generate the Boolean function given
by the equation

Y = A�B�C +A�B�C +A�B�C +A�B�C (8.7)

In general, an n-to-2n decoder and m external OR gates can be used to implement any combinational
circuit with n inputs and m outputs. We can appreciate that a Boolean function with a large number
of minterms, if implemented with a decoder and an external OR gate, would require an OR gate
with an equally large number of inputs. Let us consider the case of implementing a four-variable
Boolean function with 12 minterms using a 4-to-16 line decoder and an external OR gate. The OR
gate here needs to be a 12-input gate. In all such cases, where the number of minterms in a given
Boolean function with n variables is greater than 2n/2 (or 2n−1�, the complement Boolean function will
have fewer minterms. In that case it would be more advantageous to do NORing of minterms of the
complement Boolean function using a NOR gate rather than doing ORing of the given function using
an OR gate. The output will be nothing but the given Boolean function.

Multiplexers and Demultiplexers 287

Figure 8.20 Logic diagram of a 3-to-8 line decoder.

288 Digital Electronics

Y3-to-8
Decoder

2
2

2
1

2
0

0
1
2
3
4
5
6
7

A

B

C

Figure 8.21 Implementing Boolean functions with decoders.

8.3.2 Cascading Decoder Circuits

There can possibly be a situation where the desired number of input and output lines is not available
in IC decoders. More than one of these devices of a given size may be used to construct a decoder
that can handle a larger number of input and output lines. For instance, 3-to-8 line decoders can be
used to construct 4-to-16 or 5-to-32 or even larger decoder circuits. The basic steps to be followed to
carry out the design are as follows:

1. If n is the number of input lines in the available decoder and N is the number of input lines in the
desired decoder, then the number of individual decoders required to construct the desired decoder
circuit would be 2N−n.

2. Connect the less significant bits of the input lines of the desired decoder to the input lines of the
available decoder.

3. The left-over bits of the input lines of the desired decoder circuit are used to enable or disable the
individual decoders.

4. The output lines of the individual decoders together constitute the output lines, with the outputs of
the less significant decoder constituting the less significant output lines and those of the higher–
order decoders constituting the more significant output lines. The concept is further illustrated in
solved example 8.8, which gives the design of a 4-to-16 decoder using 3-to-8 decoders.

Example 8.6

Implement a full adder circuit using a 3-to-8 line decoder.

Solution
A decoder with an OR gate at the output can be used to implement the given Boolean function. The
decoder should at least have as many input lines as the number of variables in the Boolean function
to be implemented. The truth table of the full adder is given in Table 8.11, and Fig. 8.22 shows the
hardware implementation.

From the truth table, Boolean functions for SUM and CARRY outputs are given by the following
equations:

Sum output S = � 1� 2� 4� 7 (8.8)

Carry output Co = � 3� 5� 6� 7 (8.9)

Multiplexers and Demultiplexers 289

Table 8.11 Example 8.6.

A B C S Co

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

3-to-8
Decoder

2
2

2
1

2
0

S

Co

0

1

2

3

4

5

6

7

A

B

C

Figure 8.22 Example 8.6.

Example 8.7

A combinational circuit is defined by F = � 0, 2, 5, 6, 7. Hardware implement the Boolean function F
with a suitable decoder and an external OR/NOR gate having the minimum number of inputs.

Solution
The given Boolean function has five three-variable minterms. This implies that the function can be
implemented with a 3-to-8 line decoder and a five-input OR gate. Also, F will have only three
three-variable minterms, which means that F could also be implemented by considering minterms
corresponding to the complement function and using a three-input NOR gate at the output. The second
option uses a NOR gate with fewer inputs and therefore is used instead. F = � 0, 2, 5, 6, 7. Therefore,
F = � 1, 3, 4.

Figure 8.23 shows the hardware implementation of Boolean function F .

290 Digital Electronics

3-to-8
Decoder

2
2

2
1

2
0

F

0

1

2

3

4

5

6

7

C

A

B

Figure 8.23 Example 8.7.

Example 8.8

Construct a 4-to-16 line decoder with two 3-to-8 line decoders having active LOW ENABLE inputs.

Solution
Let us assume that A (LSB), B, C and D (MSB) are the input variables for the 4-to-16 line decoder.
Following the steps outlined earlier, A (LSB), B and C (MSB) will then be the input variables for the
two 3-to-8 line decoders. If we recall the 16 possible input combinations from 0000 to 1111 in the
case of a 4-to-16 line decoder, we find that the first eight combinations have D = 0, with CBA going
through 000 to 111. The higher-order eight combinations all have D = 1, with CBA going through 000
to 111. If we use the D-bit as the ENABLE input for the less significant 3-to-8 line decoder and the
D-bit as the ENABLE input for the more significant 3-to-8 line decoder, the less significant 3-to-8
line decoder will be enabled for the less significant eight of the 16 input combinations, and the more
significant 3-to-8 line decoder will be enabled for the more significant of the 16 input combinations.
Figure 8.24 shows the hardware implementation. One of the output lines D0 to D15 is activated as the
input bit sequence DCBA goes through 0000 to 1111.

Example 8.9

Figure 8.25 shows the logic symbol of IC 74154, which is a 4-to-16 line decoder/demultiplexer. The
logic symbol is in ANSI/IEEE format. Determine the logic status of all 16 output lines for the following
conditions:

(a) D = HIGH, C = HIGH, B = LOW, A = HIGH, G1 = LOW and G2 = LOW.
(b) D = HIGH, C = HIGH, B = LOW, A = HIGH, G1 = HIGH and G2 = HIGH.
(c) D = HIGH, C = HIGH, B = LOW, A = HIGH, G1 = HIGH and G2 = HIGH.

Solution
It is clear from the given logic symbol that the device has active HIGH inputs, active LOW outputs
and two active LOW ENABLE inputs. Also, both ENABLE inputs need to be active for the decoder
to function owing to the indicated ANDing of the two ENABLE inputs.

Multiplexers and Demultiplexers 291

3-to-8
Decoder

2
2

2
1

2
0

D0
D1
D2
D3
D4
D5
D6
D7

3-to-8
Decoder

D8
D9
D10
D11
D12
D13
D14
D15

E

2
2

2
1

2
0

E

C

B

A

D

Figure 8.24 Example 8.8.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

74154

1(A)

2(B)

4(C)

8(D)

&
G1

G2

Figure 8.25 Example 8.9.

292 Digital Electronics

(a) Since both ENABLE inputs are active, the decoder outputs will therefore be active depending upon
the logic status of the input lines. For the given logic status of the input lines, decoder output line
13 will be active and therefore LOW. All other output lines will be inactive and therefore in the
logic HIGH state.

(b) Since neither ENABLE input is active, all decoder outputs will be inactive and in the logic HIGH
state.

(c) The same as (b).

Example 8.10

The decoder of example 8.9 is to be used as a 1-of-16 demultiplexer. A logically compatible pulsed
waveform is to be switched between output line 9 and line 15 when the logic status of an external
control input is LOW and HIGH respectively. Draw the logic diagram indicating the logic status of
ENABLE inputs and DCBA inputs and the point of application of the pulsed waveform.

Solution
Figure 8.26 shows the logic diagram. When the external control input is in the logic LOW state, D =
HIGH, C = LOW, B = LOW and A = HIGH. This means that output line 9 is activated. When
the external control input is in the logic HIGH state, D = HIGH, C = HIGH, B = HIGH and A =
HIGH. This means that output line 15 is activated. In the logic diagram shown in Fig. 8.26, the two
ENABLE inputs are tied together and the pulsed waveform is applied to a common point. This means
that either both ENABLE inputs are active (when the input waveform is in the logic LOW state) or
inactive (when the input waveform is in the logic HIGH state). Thus, when the input waveform is in
the logic LOW state, output line 9 will be in the logic LOW state and all other output lines will be in
the logic HIGH state provided the external control input is also in the logic LOW state. If the external

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

74154

1(A)

2(B)

4(C)

8(D)

&

External
Control

G1
G2

'1’

Figure 8.26 Example 8.10.

Multiplexers and Demultiplexers 293

control input is in the logic HIGH state, logic LOW in the input waveform appears at output line 15.
In essence, the logic status of the input waveform is reproduced at either line 9 or line 15, depending
on whether the external control signal is LOW or HIGH.

8.4 Application-Relevant Information
Table 8.12 lists commonly used IC type numbers used as multiplexers, encoders, demultiplexers and
decoders. Application-relevant information such as the pin connection diagram, truth table, etc., in
respect of the more popular of these type numbers is given in the companion website.

Table 8.12 Commonly used IC type numbers used as multiplexers, encoders,
demultiplexers and decoders.

IC Type Function Logic
number family

7442 1-of-10 decoder TTL
74138 1-of-8 decoder/demultiplexer TTL
74139 Dual 1-of-4 decoder/demultiplexer TTL
74145 1-of-10 decoder/driver (open collector) TTL
74147 10-line to four-line priority encoder TTL
74148 Eight-line to three-line priority encoder TTL
74150 16-input multiplexer TTL
74151 Eight-input multiplexer TTL
74152 Eight-input multiplexer TTL
74153 Dual four-input multiplexer TTL
74154 4-of-16 decoder/demultiplexer TTL
74155 Dual 1-of-4 decoder/demultiplexer TTL
74156 Dual 1-of-4 decoder/demultiplexer (open collector) TTL
74157 Quad two-input noninverting multiplexer TTL
74158 Quad two-input inverting multiplexer TTL
74247 BCD to seven-segment decoder/driver (open collector) TTL
74248 BCD to seven-segment decoder/driver with Pull-ups TTL
74251 Eight-input three-state multiplexer TTL
74253 Dual four-input three-state multiplexer TTL
74256 Dual four-bit addressable latch TTL
74257 Quad two-input non-inverting three-state multiplexer TTL
74258 Quad two-input inverting three-state multiplexer TTL
74259 Eight-bit addressable latch TTL
74298 Dual two-input multiplexer with output latches TTL
74348 Eight-line to three-line priority encoder (three-state) TTL
74353 Dual four-input multiplexer TTL
74398 Quad two-input multiplexer with output register TTL
74399 Quad two-input multiplexer with output register TTL
4019 Quad two-input multiplexer CMOS
4028 1-of-10 decoder CMOS
40147 10-line to four-line BCD priority encoder CMOS
4511 BCD to seven-segment latch/decoder/driver CMOS
4512 Eight-input three-state multiplexer CMOS
4514 1-of-16 decoder/demultiplexer with input latch CMOS

(continued overleaf)

294 Digital Electronics

Table 8.12 (continued).

IC Type Function Logic
number family

4515 1-of-16 decoder/demultiplexer with input latch CMOS
4532 Eight-line to three-line priority encoder CMOS
4539 Dual four-input multiplexer CMOS
4543 BCD to seven-segment latch/decoder/driver for LCD

displays
CMOS

4555 Dual 1-of-4 decoder/demultiplexers CMOS
4556 Dual 1-of-4 decoder/demultiplexers CMOS
4723 Dual four-bit addressable latch CMOS
4724 Eight-bit addressable latch CMOS
10132 Dual two-input multiplexer with latch and common

reset
ECL

10134 Dual multiplexer with latch ECL
10158 Quad two-input multiplexer (non-inverting) ECL
10159 Quad two-input multiplexer (inverting) ECL
10161 3-to-8 line decoder (LOW) ECL
10162 3-to-8 line decoder (HIGH) ECL
10164 Eight-line multiplexer ECL
10165 Eight-input priority encoder ECL
10171 Dual 2-to-4 line decoder (LOW) ECL
10172 Dual 2-to-4 line decoder (HIGH) ECL
10173 Quad two-input multiplexer/latch ECL
10174 Dual 4-to-1 multiplexer ECL

Review Questions
1. What is a multiplexer circuit? Briefly describe one or two applications of a multiplexer?
2. Is it possible to enhance the capability of an available multiplexer in terms of the number of input

lines it can handle by using more than one device? If yes, briefly describe the procedure to do so,
with the help of an example.

3. What is an encoder? How does a priority encoder differ from a conventional encoder? With the
help of a truth table, briefly describe the functioning of a 10-line to four-line priority encoder with
active LOW inputs and outputs and priority assigned to the higher-order inputs.

4. What is a demultiplexer and how does it differ from a decoder? Can a decoder be used as a
demultiplexer? If yes, from where do we get the required input line?

5. Briefly describe how we can use a decoder optimally to implement a given Boolean function?
Illustrate your answer with the help of an example.

6. Draw truth tables for the following:

(a) an 8-to-1 multiplexer with active LOW inputs and an active LOW ENABLE input;
(b) a four-line to 16-line decoder with active HIGH inputs and active LOW outputs and an active

LOW ENABLE input;
(c) an eight-line to three-line priority encoder with active LOW inputs and outputs and an active

LOW ENABLE input.

Multiplexers and Demultiplexers 295

Problems
1. Implement the three-variable Boolean function F�A�B�C� = A�C + A�B�C + A�B�C using (i) an

8-to-1 multiplexer and (ii) a 4-to-1 multiplexer.
(i) Fig. 8.27(a); (ii) Fig. 8.27(b)

8-to-1
MUX

F

I0
I1
I2
I3
I4
I5
I6
I7

S2 S1 S0

A B C

(a)

4-to-1
MUX

I0

I1

I2

I3
S1 S0

B C

(b)

A
F

'0’ '1’

'0’

'1’

Figure 8.27 Problem 1.

2. Design a 32-to-1 multiplexer using 8-to-1 multiplexers having an active LOW ENABLE input and
a 2-to-4 decoder.

Fig. 8.28

296 Digital Electronics

8-to-1
MUX

I0
I1

I7

D0

D7

S2
S1
S0
E

S0
S1
S2

Y

F

8-to-1
MUX

I0
I1

I7

D8

D15

S2
S1
S0
E

8-to-1
MUX

I0
I1

I7

D16

D23

S2
S1
S0
E

8-to-1
MUX

I0
I1

I7

D24

D31

S2
S1
S0
E

S1

S2

0

1

2

3

2-to-4
Decoder

S4

S3

Y

Y

Y

Figure 8.28 Answer to problem 2.

Multiplexers and Demultiplexers 297

3. Determine the function performed by the combinational circuit of Fig. 8.29.

Figure 8.29 Problem 3.

4-to-1 multiplexer

4. Implement a full subtractor combinational circuit using a 3-to-8 decoder and external NOR gates.
Fig. 8.30

3-to-8
Decoder

2
2

2
1

2
0

Difference

Borrow Out

0

1

2

3

4

5

6

7

A

B

Bin

Figure 8.30 Answer to problem 4.

298 Digital Electronics

Further Reading
1. Floyd, T. L. (2005) Digital Fundamentals, Prentice-Hall Inc., USA.
2. Tokheim, R. L. (1994) Schaum’s Outline Series of Digital Principles, McGraw-Hill Companies Inc., USA.
3. Tocci, R. J. (2006) Digital Systems – Principles and Applications, Prentice-Hall Inc., NJ, USA.
4. Cook, N. P. (2003) Practical Digital Electronics, Prentice-Hall, NJ, USA.
5. Rafiquzzaman, M. (2005) Fundamentals of Digital Logic and Microcomputer Design, Wiley-Interscience, New

York, USA.
6. Morris Mano, M. and Kime, C. R. (2003) Logic and Computer Design Fundamentals, Prentice-Hall Inc., USA.

9
Programmable Logic Devices

Logic devices constitute one of the three important classes of devices used to build digital electronics
systems, memory devices and microprocessors being the other two. Memory devices such as ROM
and RAM are used to store information such as the software instructions of a program or the contents
of a database, and microprocessors execute software instructions to perform a variety of functions,
from running a word-processing program to carrying out far more complex tasks. Logic devices
implement almost every other function that the system must perform, including device-to-device
interfacing, data timing, control and display operations and so on. So far, we have discussed those
logic devices that perform fixed logic functions decided upon at the manufacturing stage. Logic
gates, multiplexers, demultiplexers, arithmetic circuits, etc., are some examples. Sequential logic
devices such as flip-flops, counters, registers, etc., to be discussed in the following chapters, also
belong to this category of logic devices. In the present chapter, we will discuss a new category
of logic devices called programmable logic devices (PLDs). The function to be performed by a
programmable logic device is undefined at the time of its manufacture. These devices are programmed
by the user to perform a range of functions depending upon the logic capacity and other features
offered by the device. We will begin with a comparison of fixed and programmable logic, and
then follow this up with a detailed description of different types of PLDs in terms of operational
fundamentals, salient features, architecture and typical applications. A brief introduction to the
devices offered by some of the major manufacturers of PLDs and PLD programming languages is
given towards the end of the chapter.

9.1 Fixed Logic Versus Programmable Logic
As outlined in the introduction, there are two broad categories of logic devices, namely fixed logic
devices and programmable logic devices. Whereas a fixed logic device such as a logic gate or
a multiplexer or a flip-flop performs a given logic function that is known at the time of device
manufacture, a programmable logic device can be configured by the user to perform a large variety of

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

300 Digital Electronics

logic functions. In terms of the internal schematic arrangement of the two types of device, the circuits
or building blocks and their interconnections in a fixed logic device are permanent and cannot be
altered after the device is manufactured.

A programmable logic device offers to the user a wide range of logic capacity in terms of digital
building blocks, which can be configured by the user to perform the intended function or set of functions.
This configuration can be modified or altered any number of times by the user by reprogramming the
device. Figure 9.1 shows a simple logic circuit comprising four three-input AND gates and a four-input
OR gate. This circuit produces an output that is the sum output of a full adder. Here, A and B are the
two bits to be added, and C is the carry-in bit. It is a fixed logic device as the circuit is unalterable
from outside owing to fixed interconnections between the various building blocks.

Figure 9.2 shows the logic diagram of a simple programmable device. The device has an array
of four six-input AND gates at the input and a four-input OR gate at the output. Each AND
gate can handle three variables and thus can produce a product term of three variables. The three
variables (A, B and C in this case) or their complements can be programmed to appear at the
inputs of any of the four AND gates through fusible links called antifuses. This means that each
AND gate can produce the desired three-variable product term. It may be mentioned here that an
antifuse performs a function that is opposite to that performed by a conventional electrical fuse.
A fuse has a low initial resistance and permanently breaks an electrically conducting path when
current through it exceeds a certain limiting value. In the case of an antifuse, the initial resistance
is very high and it is designed to create a low-resistance electrically conducting path when voltage
across it exceeds a certain level. As a result, this circuit can be programmed to generate any three-
variable sum-of-products Boolean function having four minterms by activating the desired fusible
links. For example, the circuit could be programmed to produce the sum output resulting from the
addition of three bits (the sum output in the case of a full adder) or to produce difference outputs
resulting from subtraction of two bits with a borrow-in (the difference output in the case of a full
subtractor).

We can visualize that the logic circuit of Fig. 9.2 has a programmable AND array at the input and a
fixed OR gate at the output. Incidentally, this is the architecture of programmable logic devices called
programmable array logic (PAL). Practical PAL devices have a much larger number of programmable
AND gates and fixed OR gates to have enhanced logic capacity and performance capability. PAL
devices are discussed in detail in the latter part of the chapter.

A
B
C

A
B
C

A
B
C

A
B
C

Y

Figure 9.1 Fixed logic circuit.

Programmable Logic Devices 301

A

B

C

+V

+V

+V

+V

Y

Figure 9.2 Simple programmable logic circuit.

9.1.1 Advantages and Disadvantages

1. If we want to build a fixed logic device to perform a certain specific function, the time required
from design to the final stage when the manufactured device is actually available for use could
easily be several months to a year or so. PLD-based design requires much less time from design
cycle to production run.

2. In the case of fixed logic devices, the process of design validation followed by incorporation
of changes, if any, involves substantial nonrecurring engineering (NRE) costs, which leads to an
enhanced cost of the initial prototype device. In the case of PLDs, inexpensive software tools can
be used for quick validation of designs. The programmable feature of these devices allows quick
incorporation of changes and also a quick testing of the device in an actual application environment.
In this case, the device used for prototyping is the same as the one that would qualify for use in the
end equipment.

302 Digital Electronics

3. In the case of programmable logic devices, users can change the circuit as often as they want to
until the design operates to their satisfaction. PLDs offer to the users much more flexibility during
the design cycle. Design iterations are nothing but changes to the programming file.

4. Fixed logic devices have an edge for large-volume applications as they can be mass produced
more economically. They are also the preferred choice in applications requiring the highest
performance level.

9.2 Programmable Logic Devices – An Overview
There are many types of programmable logic device, distinguishable from one another in terms of
architecture, logic capacity, programmability and certain other specific features. In this section, we
will briefly discuss commonly used PLDs and their salient features. A detailed description of each of
them will follow in subsequent sections.

9.2.1 Programmable ROMs

PROM (Programmable Read Only Memory) and EPROM (Erasable Programmable Read Only
Memory) can be considered to be predecessors to PLDs. The architecture of a programmable ROM
allows the user to hardware-implement an arbitrary combinational function of a given number of inputs.
When used as a memory device, n inputs of the ROM (called address lines in this case) and m outputs
(called data lines) can be used to store 2nm-bit words. When used as a PLD, it can be used to implement
m different combinational functions, with each function being a chosen function of n variables. Any
conceivable n-variable Boolean function can be made to appear at any of the m output lines. A
generalized ROM device with n inputs and m outputs has 2n hard-wired AND gates at the input and m
programmable OR gates at the output. Each AND gate has n inputs, and each OR gate has 2n inputs.
Thus, each OR gate can be used to generate any conceivable Boolean function of n variables, and this
generalized ROM can be used to produce m arbitrary n-variable Boolean functions. The AND array
produces all possible minterms of a given number of input variables, and the programmable OR array
allows only the desired minterms to appear at their inputs. Figure 9.3 shows the internal architecture
of a PROM having four input lines, a hard-wired array of 16 AND gates and a programmable array
of four OR gates. A cross (×) indicates an intact (or unprogrammed) fusible link or interconnection,
and a dot (•) indicates a hard-wired interconnection. PROMs, EPROMs and EEPROMs (Electrically
Erasable Programmable Read Only Memory) can be programmed using standard PROM programmers.
One of the major disadvantages of PROMs is their inefficient use of logic capacity. It is not economical
to use PROMs for all those applications where only a few minterms are needed. Other disadvantages
include relatively higher power consumption and an inability to provide safe covers for asynchronous
logic transitions. They are usually much slower than the dedicated logic circuits. Also, they cannot be
used to implement sequential logic owing to the absence of flip-flops.

9.2.2 Programmable Logic Array

A programmable logic array (PLA) device has a programmable AND array at the input and a
programmable OR array at the output, which makes it one of the most versatile PLDs. Its architecture
differs from that of a PROM in the following respects. It has a programmable AND array rather than
a hard-wired AND array. The number of AND gates in an m-input PROM is always equal to 2m. In
the case of a PLA, the number of AND gates in the programmable AND array for m input variables

Programmable Logic Devices 303

Y1 Y2 Y3 Y4

D C B A

Hard-wired AND-array

Programmable OR-array

Figure 9.3 Internal architecture of a PROM.

304 Digital Electronics

D C B A

Programmable AND-array

Y1 Y2

Programmable OR-array

Figure 9.4 Internal architecture of a PLA device.

is usually much less than 2m, and the number of inputs of each of the OR gates equals the number of
AND gates. Each OR gate can generate an arbitrary Boolean function with a maximum of minterms
equal to the number of AND gates. Figure 9.4 shows the internal architecture of a PLA device with
four input lines, a programmable array of eight AND gates at the input and a programmable array of
two OR gates at the output. A PLA device makes more efficient use of logic capacity than a PROM.
However, it has its own disadvantages resulting from two sets of programmable fuses, which makes it
relatively more difficult to manufacture, program and test.

9.2.3 Programmable Array Logic

Programmable array logic (PAL) architecture has a programmable AND array at the input and a fixed
OR array at the output. The programmable AND array of a PAL device is similar to that of a PLA
device. That is, the number of programmable AND gates is usually smaller than the number required

Programmable Logic Devices 305

to generate all possible minterms of the given number of input variables. The OR array is fixed and
the AND outputs are equally divided between available OR gates. For instance, a practical PAL device
may have eight input variables, 64 programmable AND gates and four fixed OR gates, with each OR
gate having 16 inputs. That is, each OR gate is fed from 16 of the 64 AND outputs. Figure 9.5 shows
the internal architecture of a PAL device that has four input lines, an array of eight AND gates at the
input and two OR gates at the output, to introduce readers to the arrangement of various building blocks
inside a PAL device and allow them a comparison between different programmable logic devices.

9.2.4 Generic Array Logic

A generic array logic (GAL) device is similar to a PAL device and was invented by
Lattice Semiconductor. It differs from a PAL device in that the programmable AND array of

D C B A

Programmable AND-array

Y1 Y2

Hard-Wired OR-array

Figure 9.5 Internal architecture of a PAL device.

306 Digital Electronics

a GAL device can be erased and reprogrammed. Also, it has reprogrammable output logic.
This feature makes it particularly attractive at the device prototyping stage, as any bugs in
the logic can be corrected by reprogramming. A similar device called PEEL (Programmable
Electrically Erasable Logic) was introduced by the International CMOS Technology (ICT)
Corporation.

9.2.5 Complex Programmable Logic Device

Programmable logic devices such as PLAs, PALs, GALs and other PAL-like devices are often grouped
into a single category called simple programmable logic devices (SPLDs) to distinguish them from the
ones that are far more complex. A complex programmable logic device (CPLD), as the name suggests,
is a much more complex device than any of the programmable logic devices discussed so far. A CPLD
may contain circuitry equivalent to that of several PAL devices linked to each other by programmable
interconnections. Figure 9.6 shows the internal structure of a typical CPLD. Each of the four logic
blocks is equivalent to a PLD such as a PAL device. The number of logic blocks in a CPLD could be
more or less than four. Each of the logic blocks has programmable interconnections. A switch matrix
is used for logic block to logic block interconnections. Also, the switch matrix in a CPLD may or
may not be fully connected. That is, some of the possible connections between logic block outputs and
inputs may not be supported by a given CPLD. While the complexity of a typical PAL device may
be of the order of a few hundred logic gates, a CPLD may have a complexity equivalent to tens of
thousands of logic gates. When compared with FPGAs, CPLDs offer predictable timing characteristics
owing to their less flexible internal architecture and are thus ideal for critical control applications and
other applications where a high performance level is required. Also, because of their relatively much
lower power consumption and lower cost, CPLDs are an ideal solution for battery-operated portable
applications such as mobile phones, digital assistants and so on. A CPLD can be programmed either
by using a PAL programmer or by feeding it with a serial data stream from a PC after soldering it on
the PC board. A circuit on the CPLD decodes the data stream and configures it to perform the intended
logic function.

Logic
Block

Logic
Block

Logic
Block

Logic
Block

S
w

itc
h

M
at

rix

Figure 9.6 CPLD architecture.

Programmable Logic Devices 307

9.2.6 Field-Programmable Gate Array

A field-programmable gate array (FPGA) uses an array of logic blocks, which can be configured by
the user. The term ‘field-programmable’ here signifies that the device is programmable outside the
factory where it is manufactured. The internal architecture of an FPGA device has three main parts,
namely the array of logic blocks, the programmable interconnects and the I/O blocks. Figure 9.7 shows
the architecture of a typical FPGA. Each of the I/O blocks provides an individually selectable input,
output or bidirectional access to one of the general-purpose I/O pins on the FPGA package. The logic
blocks in an FPGA are no more complex than a couple of logic gates or a look-up table feeding a
flip-flop. The programmable interconnects connect logic blocks to logic blocks and also I/O blocks to
logic blocks.

FPGAs offer a much higher logic density and much larger performance features compared with
CPLDs. Some of the contemporary FPGA devices offer a logic complexity equivalent to that of
eight million system gates. Also, these devices offer features such as built-in hard-wired processors,

Programmable
Interconnect

I/O
Blocks

Logic
Blocks

Figure 9.7 FPGA architecture.

308 Digital Electronics

large memory, clock management systems and support for many of the contemporary device-to-device
signalling technologies. FPGAs find extensive use in a variety of applications, which include data
processing and storage, digital signal processing, instrumentation and telecommunications.

FPGAs are also programmed like CPLDs after they are soldered onto the PC board. In the case of
FPGAs, the programmed configuration is usually volatile and therefore needs to be reloaded whenever
power is applied or a different functionality is required.

9.3 Programmable ROMs
A read only memory (ROM) is essentially a memory device that can be used to store a certain fixed
set of binary information. As outlined earlier, these devices have certain inherent links that can be
made or broken depending upon the type of fusible link to store any user-specified binary information
in the device. While, in the case of a conventional fusible link, relevant interconnections are broken to
program the device, in the case of an antifuse the relevant interconnections are made to do the same
job. This is illustrated in Fig. 9.8. Figure 9.8(a) shows the internal logic diagram of a 4 × 2 PROM. The
figure shows an unprogrammed PROM. Figures 9.8(b) and (c) respectively show the use of a fuse and
an antifuse to produce output-1 = AB. Note that in the case of a fuse an unprogrammed interconnection
is a ‘make’ connection, whereas in the case of an antifuse it is a ‘break’ connection.

Once a given pattern is formed, it remains as such even if power is turned off and on. In the
case of PROMs, the user can erase the data already stored on the ROM chip and load it with
fresh data. Memory-related issues of ROMs are discussed in detail in Chapter 15 on microcomputer
fundamentals. In the present section, we will discuss the use of a PROM as a programmable logic
device for implementation of combinational logic functions, which is one of the most widely exploited
applications of PROMs. A PROM in general has n input lines and m output lines and is designated as
a 2n × m PROM. Looking at the internal architecture of a PROM device, it is a combinational circuit
with the AND gates wired as a decoder and having OR gates equal to the number of outputs. A PROM
with five input lines and four output lines, for instance, would have the equivalent of a 5 × 32 decoder
at the input that would generate 32 possible minterms or product terms. Each of these four OR gates
would be a 32-input gate fed from 32 outputs of the decoder through fusible links.

Figure 9.9 shows the internal architecture of a 32 × 4 PROM. We can see that the input side is hard-
wired to produce all possible 32 product terms corresponding to five variables. All 32 product terms or
minterms are available at the inputs of each of the OR gates through programmable interconnections.
This allows the users to have four different five-variable Boolean functions of their choice. Very complex
combinational functions can be generated with PROMs by suitably making or breaking these links.

To sum up, for implementing an n-input or n-variable, m−output combinational circuit, one would
need a 2n × m PROM. As an illustration, let us see how a PROM can be used to implement the
following Boolean function with two outputs given by the equations

F1�A�B�C� = �0� 2 (9.1)

F2�A�B�C� = �1� 4� 7 (9.2)

Implementation of this Boolean function would require an 8 × 2 PROM. The internal logic diagram
of the PROM in this case, after it is programmed, would be as shown in Fig. 9.10. Note that, in the
programmed PROM of Fig. 9.10, an unprogrammed interconnection indicated by a cross (× � is a
‘make’ connection.

It may be mentioned here that in practice a PROM would not be used to implement as simple a
Boolean function as that illustrated above. The purpose here is to indicate to readers how a PROM

Programmable Logic Devices 309

BA

Output-1 Output-2(a)

BA

Output-1 Output-2
(b)

BA

Output-1 Output-2
(c)

Figure 9.8 Use of fuse and antifuse.

310 Digital Electronics

Programmable
OR-array

EDCA B

Y1 Y2 Y3 Y4

1

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Hard-wired AND-array

Figure 9.9 Internal architecture of a 32 × 4 PROM.

Programmable Logic Devices 311

CBA

F1 F2

Figure 9.10 8 × 2 PROM internal logic diagram to implement given Boolean function.

implements a Boolean function. In actual practice, PROMs would be used only in the case of very
complex Boolean functions.

Another noteworthy point is that, when it comes to implementing Boolean functions with PROMs,
it is not economical to use PROM for those Boolean functions that have a large number of ‘don’t care’
conditions. In the case of a PROM, each ‘don’t care’ condition would have either all 0s or all 1s. In
other words, the space on the chip is not optimally utilized. Other programmable logic devices such
as a PLA or PAL are more suitable in such situations.

Example 9.1

Determine the size of the PROM required for implementing the following logic circuits:

(a) a binary multiplier that multiplies two four-bit numbers;
(b) a dual 8-to-1 multiplexer with common selection inputs;
(c) a single-digit BCD adder/subtractor with a control input for selection of operation.

312 Digital Electronics

Solution
(a) The number of inputs required here would be eight. The result of multiplication would be in eight

bits. Therefore, the size of the PROM = 28 ×8 = 256 × 8.
(b) The number of inputs = 8+8+3 = 19 (the number of selection inputs = 3). The number of outputs

= 2. Therefore, the size of the PROM = 219 ×2 = 512K × 2.
(c) The number of inputs = 4 (augend bits) + 4 (addend bits) + 1 (carry-in) + 1 (control input) = 10.

The number of outputs = 4 (sum or subtraction output bits) + 1 (carry or borrow bit) = 5. The size
of the PROM = 210 ×5 = 1024 ×5 = 1K × 5.

9.4 Programmable Logic Array
A programmable logic array (PLA) enables logic functions expressed in sum-of-products form to be
implemented directly. It is similar in concept to a PROM. However, unlike a PROM, the PLA does
not provide full decoding of the input variables and does not generate all possible minterms. While a
PROM has a fixed AND gate array at the input and a programmable OR gate array at the output, a
PLA device has a programmable AND gate array at the input and a programmable OR gate array at the
output. In a PLA device, each of the product terms of the given Boolean function is generated by an
AND gate which can be programmed to form the AND of any subset of inputs or their complements.
The product terms so produced can be summed up in an array of programmable OR gates. Thus, we
have a programmable OR gate array at the output. The input and output gates are constructed in the
form of arrays with input lines orthogonal to product lines and product lines orthogonal to output
lines.

Figure 9.11 shows the internal architecture of a PLA device with four input lines, eight product
lines and four output lines. That is, the programmable AND gate array has eight AND gates. Each
of the AND gates here has eight inputs, corresponding to four input variables and their complements.
The input to each of the AND gates can be programmed to be any of the possible 16 combinations of
four input variables and their complements. Four OR gates at the output can generate four different
Boolean functions, each having a maximum of eight minterms out of 16 minterms possible with four
variables. The logic diagram depicts the unprogrammed state of the device. The internal architecture
shown in Fig. 9.11 can also be represented by the schematic form of Fig. 9.12. PLAs usually have
inverters at the output of OR gates to enable them to implement a given Boolean function in either
AND-OR or AND-OR-INVERT form.

Figure 9.13 shows a generalized block schematic representation of a PLA device having n inputs, m
outputs and k product terms, with n, m and k respectively representing the number of input variables,
the number of OR gates and the number of AND gates. The number of inputs to each OR gate and
each AND gate are k and 2n respectively.

A PLA is specified in terms of the number of inputs, the number of product terms and the number
of outputs. As is clear from the description given in the preceding paragraph, the PLA would have a
total of 2Kn+Km programmable interconnections. A ROM with the same number of input and output
lines would have 2n ×m programmable interconnections.

A PLA could be either mask programmable or field programmable. In the case of a mask-
programmable PLA, the customer submits a program table to the manufacturer to produce a custom-
made PLA having the desired internal paths between inputs and outputs. A field-programmable logic
array (FPLA) is programmed by the users themselves by means of a hardware programmer unit
available commercially.

Programmable Logic Devices 313

A B C D

Programmable OR-array

Y1 Y2 Y3 Y4

Programmable AND-array

Figure 9.11 Internal architecture of a PLA device.

True

Comp.

Outputs
AND
8x8

Array

8x4
OR

Array

4

4

A, B, C, D
Inputs

Figure 9.12 Alternative representation of PLA architecture.

While implementing a given Boolean function with a PLA, it is important that each expression is
simplified to a minimum number of product terms which would minimize the number of AND gates
required for the purpose. Since all input variables are available to different AND gates, simplification
of Boolean functions to reduce the number of literals in various product terms is not important. In fact,

314 Digital Electronics

(k)
AND-Gates

(Product terms)

(m)
OR-Gates

(Sum terms)

Inputs(n)

Output(m)

Figure 9.13 Generalized representation of PLA architecture.

each of the Boolean functions and their complements should be simplified. What is desirable is to have
fewer product terms and product terms that are common to other functions. We would recall that PLAs
offer the flexibility of implementing Boolean functions in both AND-OR and AND-OR-INVERT forms.

Example 9.2

Show the logic arrangement of both a PROM and a PLA required to implement a binary full adder.

Solution
The truth table of a full adder is given in Table 9.1. The Boolean expressions for sum S and carry-out
Co can be written as follows:

S = �1� 2� 4� 7 (9.3)

Co = �3� 5� 6� 7 (9.4)

Figure 9.14 shows the implementation with an 8 × 2 PROM.
If we simplify the Boolean expressions for the sum and carry outputs, we will find that the expression

for the sum output cannot be simplified any further, and also that the expression for carry-out can be
simplified to three product terms with fewer literals. If we examine even the existing expressions, we
find that we would need seven AND gates in the PLA implementation. And if we use the simplified
expressions, even then we would require the same number of AND gates. Therefore, the simplification
here would not help as far as its implementation with a PLA is concerned. Figure 9.15 shows the
implementation of a full adder with a PLA device.

Table 9.1 Truth table for example 9.2.

A B Carry-in Sum Carry-out
(Ci) (S) (Co)

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Programmable Logic Devices 315

BA

S Co

Ci

Figure 9.14 Solution to problem 9.2 using a PROM.

Example 9.3

We have two two-bit binary numbers A1A0 and B1B0. Design a PLA device to implement a magnitude
comparator to produce outputs for A1A0 being ‘equal to’, ‘not equal to’, ‘less than’ and ‘greater than’
B1B0�

Solution
Table 9.2 shows the function table with inputs and desired outputs. The Boolean expressions for the
desired outputs are given in the following equations:

Output 1�equal to� = A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 (9.5)

Output 2 (not equal to)

= A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0

+A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 (9.6)

316 Digital Electronics

CiBA

S Co

Figure 9.15 Solution to problem 9.2 using a PLA.

Output 3 (less than)

= A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 (9.7)

Output 4 (greater than)

= A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 (9.8)

Figures 9.16(a) to (d) show the Karnaugh maps for the four outputs. The minimized Boolean
expressions can be written from the Karnaugh maps as follows:

Output 1�equal to� = A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 +A1�A0�B1�B0 (9.9)

Output 2�not equal to� = A1�B1 +A1�B1 +A0�B0 +A0�B0 (9.10)

Programmable Logic Devices 317

Table 9.2 Function table for example 9.3.

A1 A0 B1 B0 Output 1 Output 2 Output 3 Output 4

0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0

Output 3�less than� = A1�B1 +A1�A0�B0 +A0�B1�B0 (9.11)

Output 4�Greater than� = A1�B1 +A1�A0�B0 +A0�B1�B0 (9.12)

Examination of minimized Boolean expressions (9.9) to (9.12) reveals that there are 12 different
product terms to be accounted for. Therefore, a PLA device with 12 AND gates will meet the
requirement. Also, since there are four outputs, we need to have four OR gates at the output. Figure
9.17 shows the programmed PLA device. Note that, in the programmed PLA device, an unprogrammed
interconnection indicated by a cross (×� is a ‘make’ connection.

9.5 Programmable Array Logic
The programmable array logic (PAL) device is a variant of the PLA device. As outlined in Section
9.2, it has a programmable AND gate array at the input and a fixed OR gate array at the output.
The idea to have a fixed OR gate array at the output and make the device less complex originated
from the fact that there were many applications where the product-term sharing capability of the PLA
was not fully utilized and thus wasted. The PAL device is a trademark of Advanced Micro Devices
Inc. PAL devices are however less flexible than PLA devices. The flexibility of a PAL device can be
enhanced by having different output logic configurations including the availability of both OR (also
called active HIGH) and NOR (also called active LOW) outputs and bidirectional pins that can act
both as inputs and outputs, having clocked flip-flops at the outputs to provide what is called registered
outputs. These features allow the device to be used in a wider range of applications than would be
possible with a device with fixed input and output allocations. The mask-programmed version of PAL
is known as the HAL (Hard Array Logic) device. A HAL device is pin-to-pin compatible with its PAL
counterpart.

318 Digital Electronics

00 01 11 10
B1B0

00

01

11

10

A A1 0

0

1 1 1

1

0

0

0

1 1

1 1

1

1

(b)

1

1

00 01 11 10

1

B1B0

1

1

1

00

01

11

10

A A1 0

(a)

0

0

0

0

0

000

00 0

0

00 01 11 10
B1B0

00

01

11

10

A A1 0

0

0

0

0

1 1

1 1

1

0

1

0

0

0 0

0

(c)

Figure 9.16 Karnaugh maps (example 9.3).

Programmable Logic Devices 319

00 01 11 10
B1B0

00

01

11

10

A A1 0

0

0

0

0 1 1

1

1

1

1

0

0

0

0 0

0

(d)

Figure 9.16 (continued).

9.5.1 PAL Architecture

Figure 9.18 shows the block schematic representation of the generalized architecture of a PAL device.
As we can see from the arrangement shown, the device has a programmable AND gate array that is
fed with various input variables and their complements. Programmable input connections allow any of
the input variables or their complements to appear at the inputs of any of the AND gates in the array.
Each of the AND gates generates a minterm of a user-defined combination of input variables and their
complements. As an illustration, Fig. 9.19 gives an example of the generation of minterms.

Outputs from the programmable AND array feed an array of hard-wired OR gates. Here, the output
of each of the AND gates does not feed the input of each of the OR gates. Each OR gate is fed from
a subset of AND gates in the array. This implies that the sum-of-product Boolean functions generated
by each of the OR gates at the output will have only a restricted number of minterms depending upon
the number of AND gates from which it is being fed. Outputs from the PAL device, as is clear from
the generalized form of representation shown in Fig. 9.18, are available both as OR outputs as well
as complemented (or NOR) outputs.

Practical PAL devices offer various output logic arrangements. One of them, of course, is the
availability of both OR and NOR outputs as mentioned in the previous paragraph. Another feature
available with many PAL devices is that of registered outputs. In the case of registered outputs, the
OR gate output drives the D-input of a D-type flip-flop, which is loaded with the data on either the
LOW-to-HIGH or the HIGH-to-LOW edge of a clock signal. Yet another feature is the availability of
bidirectional pins, which can be used both as outputs and inputs. This facility allows the user to feed a
product term back to the programmable AND array. It helps particularly in those multi-output function
logic circuits that share some common minterms. Some of the common output logic arrangements
available with PAL devices are shown in Fig. 9.20.

Some PAL devices offer an EX-OR gate following the OR gate at each output. One of the inputs
to the EX-OR gate is programmable, which allows the user to configure it as either an inverter
or a noninverting buffer or as a two-input EX-OR gate. This feature is particularly useful while
implementing parity and arithmetic operations.

320 Digital Electronics

B1A0A1 B0

O/P-1 O/P-2 O/P-3 O/P-4

Figure 9.17 Programmed PLA device (example 9.3).

9.5.2 PAL Numbering System

The standard PAL numbering system uses an alphanumeric designation comprising a two-digit number
indicating the number of inputs followed by a letter that tells about the architecture/type of logic output.
Table 9.3 gives an interpretation of different letter designations in use. Another number following the

Programmable Logic Devices 321

Programmable
AND-Array

Outputs

Inputs
Hard-wired
OR-ArrayProduct

terms

Figure 9.18 Generalized PAL device.

C DBA

ACD

Logic'0'

Figure 9.19 Programmability of inputs in a PAL device.

letter indicates the number of outputs. In the case of PAL devices offering a combination of different
types of logic output, the rightmost number indicates the number of the output type implied by the
letter used in the designation. For example, a PAL device designated PAL-16L8 will have 16 inputs
and eight active LOW outputs. Another PAL device designated PAL-16R4 has 16 inputs and four
registered outputs. Also, the number of inputs as given by the number designation includes dedicated
inputs, user-programmable inputs accessible from combinational I/O pins and any feedback inputs

322 Digital Electronics

clock

Output
Enable

Programmable AND-array

FF

Q Q

F

Figure 9.20 Output logic arrangements in a PAL device.

Table 9.3 PAL numbering system.

Architecture – Combinational devices Architecture – Registered devices

Code Description Code Description
Letter letter

H Active HIGH outputs R Registered outputs
L Active LOW outputs X EXCLUSIVE-OR gates
P Programmable output polarity RP Registered polarity

Programmable
C Complementary outputs RS Registered-term steering
XP EXCLUSIVE-OR gate- V Versatile varied

Programmable Product terms
S Product term steering RX Registered EX-OR

MA Macrocell

from combinational and registered outputs. For example, PAL-16L8 has 10 dedicated inputs and six
inputs accessible from I/O pins.

In addition to the numbering system described above, an alphanumeric designation on the extreme
left may be used to indicate the technology used. ‘C’ stands for CMOS, ‘10H’ for 10KH ECL and
‘100’ for 100K ECL. TTL is represented by a blank. A letter on the extreme right may be used to

Programmable Logic Devices 323

indicate the power level, with ‘L’ and ‘Q’ respectively indicating low and quarter power levels and a
blank representing full power.

Example 9.4

Table 9.4 shows the function table of a converter. Starting with the Boolean expressions for the four
outputs (P, Q, R, S), minimize them using Karnaugh maps and then hardware-implement this converter
with a suitable PLD with PAL architecture.

Solution
From the given function table, we can write the Boolean expressions for the four outputs as follows:

P = A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D (9.13)

Q = A�B�C�D+A�B�C�D (9.14)

R = A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D (9.15)

S = A�B�C�D+A�B�C�D+A�B�C�D+A�B�C�D (9.16)

Karnaugh maps for the four outputs P,Q,R and S are respectively shown in Figs 9.21(a) to (d). The
minimized Boolean expressions are given by the equations

Table 9.4 Function table in example 9.4.

A B C D P Q R S

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

324 Digital Electronics

00 01 11 10
CD

1

1

1

00

01

11

10

AB

(a)

0 0

X10

10

0

XX

X

X

X

00 01 11 10
CD

1

0

0

00

01

11

10

AB

(b)

0 1

X00

00

0

XX

X

X

X

00 01 11 10
CD

1

0

0

00

01

11

10

AB

(c)

0 1

X11

11

0

XX

X

X

X

Figure 9.21 Karnaugh maps (example 9.4).

Programmable Logic Devices 325

00 01 11 10
CD

0

1

0

00

01

11

10

AB

(d)

0 0

X10

01

1

XX

X

X

X

Figure 9.21 (continued).

P = B�D+B�C +A (9.17)

Q = B�C (9.18)

R = B+C (9.19)

S = A�B�C�D+B�C�D+A�D+B�C�D (9.20)

The next step is to choose a suitable PAL device. Since there are four output functions, we will need
a PAL device with at least four OR gates at the output. Since each of the OR gates is to be hard wired
to only a subset of programmable AND arrays, and also because one of the output functions has four
product terms, we will need an AND array of 16 AND gates. Since there are four input variables, we
need each AND gate in the array to have eight inputs to cater for four variables and their complements.
To sum up, we choose a PAL device that has eight inputs, 16 AND gates in the programmable AND
array and four OR gates at the output. Each OR gate has four inputs.

Figure 9.22 shows the architecture of the programmed PAL device. We can see that the P output
has only three product terms. The fourth input to the relevant OR gate needs to be applied a logic ‘0’
input. This is achieved by feeding the inputs of the corresponding AND gate with all four variables
and their complements. Logic 0s, wherever required, are implemented in the same manner. Note that,
in the programmed PAL device of Fig. 9.22, an unprogrammed interconnection indicated by a cross
(×� is a ‘make’ connection.

9.6 Generic Array Logic
Generic array logic (GAL) is characterized by a reprogrammable AND array, a fixed OR array and
a reprogrammable output logic. It is similar to a PAL device, with the difference that the AND

326 Digital Electronics

DCBA

P Q R S

Figure 9.22 Programmed PAL (example 9.4).

Programmable Logic Devices 327

E
2
CMOS

Programmable
AND-Array

OLMC Input/Output-1

OLMC Input/Output-2

OLMC Input/Output-3

Input-1

Input-2

Input-n

(a)

4-to-1
MUX

S1 S0

D FF

Q

Q

I/O

2-to-1
MUX

S1

From
Programmable

AND-Array

To
Programmable

AND-Array

(b)

Figure 9.23 (a) Generic array logic generalized block schematic and (b) architecture of an OLMC.

array is not just programmable as is the case in a PAL device but is reprogrammable. That is, it
can be reprogrammed any number of times. This has been made possible by the use of electrically
erasable PROM cells for storing the programming pattern. The other difference is in the use of
reprogrammable output logic, which provides more flexibility to the designer. GAL devices employ
output logic macrocells (OLMCs) at the output, which allows the designer to configure the outputs
either as combinational outputs or registered outputs.

328 Digital Electronics

Figures 9.23(a) and (b) respectively show the block schematic representation of a GAL device
and the architecture of a typical OLMC used with GAL devices. The OLMC of the type shown in
Fig. 9.23(b) can be configured to produce four different outputs depending upon the selection inputs.
These include the following:

1. S1S0 = 00: registered mode with active LOW output.
2. S1S0 = 01: registered mode with active HIGH output.
3. S1S0 = 10: combinational mode with active LOW output.
4. S1S0 = 11: combinational mode with active HIGH output.

We can see that two of the four inputs to the 4-to-1 multiplexer are combinational outputs, and the
other two are the registered outputs. Also, of the two combinational outputs, one is an active HIGH
output while the other is an active LOW output. The same is the case with registered outputs. Of the
four inputs to the multiplexer, the one appearing at the output depends upon selection inputs. The 2-to-1
multiplexer ensures that the final output is also available as feedback to the programmable AND array.

9.7 Complex Programmable Logic Devices
If we examine the internal architecture of simple programmable logic devices (SPLDs) such as PLAs
and PALs, we find that it is not practical to increase their complexity beyond a certain level. This
is because the size of the programmable plane (such as the programmable AND plane in a PLA or
PAL device) increases too rapidly with increase in the number of inputs to make it a practically viable
device. One way to increase the logic capacity of simple programmable logic devices is to integrate
multiple SPLDs on a single chip with a programmable interconnect between them. These devices
have the same basic internal structure that we see in the case of SPLDs and are grouped together
in the category of complex programmable logic devices (CPLDs). Typically, CPLDs may offer a
logic capacity equivalent to that of about 50 SPLDs. Programmable logic devices with much higher
logic capacities would require a different approach rather than simple extension of the concept of
SPLDs.

9.7.1 Internal Architecture

As outlined in the previous paragraph, a CPLD is nothing but the integration of multiple PLDs, a
programmable interconnect matrix and an I/O control block on a single chip. Each of the identical
PLDs is referred to as a logic block or function block. Figure 9.24 shows the architecture of a typical
CPLD. As is evident from the block schematic arrangement, the programmable interconnect matrix is
capable of connecting the input or output of any of the logic blocks to any other logic block. Also,
input and output pins connect directly to both the interconnect matrix as well as logic blocks.

Logic blocks may further comprise smaller logic units called macrocells, where each of the macrocells
is a subset of a PLD-like logic block. Figure 9.25 shows the structure of a logic block along with
its interconnections with the programmable interconnect matrix and I/O block. The horizontal grey-
coloured bars inside the logic block constitute an array of macrocells. Typically, each macrocell
comprises a set of product terms generated by a subset of the programmable AND array and feeding
a configurable output logic. The output logic typically comprises an OR gate, an EX-OR gate and a
flip-flop. The flip-flop in the case of most contemporary CPLDs is configurable as a D-type, J-K, T ,
or R-S flip-flop or can even be transparent. Also, the OR gate can be fed with any or all of the product
terms generated within the macrocell. Most contemporary CPLDs also offer an architecture where the

Programmable Logic Devices 329

LB

LB

LB

LB

LB

LB

LB

LB

I/O

LB : Logic B lock

P
ro

g
ra

m
m

ab
le

In
te

rc
o

n
n

ec
t

M
at

ri
x

I/O

Figure 9.24 CPLD architecture.

I/O
Control
Block

Macrocell

Product term
Sharing

P
ro

g
ra

m
m

ab
le

In
te

rc
o

n
n

ec
t

To
other LBs from

I/O pins

Figure 9.25 Logic block structure.

OR gate can also be fed with some additional product terms generated within other macrocells of the
same logic block. For example, a logic block in the case of the MAX-7000 series of CPLDs from
Altera offers this product-term flexibility, where the OR gate of each macrocell can have up to 15

330 Digital Electronics

Inputs
Global

Set/Reset
Global
Clock

Additional
Product
Terms
(from other
Macrocells)

Product Term Set

0

1

Product Term Clock

Product Term Reset

D/T
S

Q

R

To
Switch
Matrix

To
I/O
Blocks

Product
Term

Allocator

Product Term OE

SR
FF

Figure 9.26 Macrocell architecture.

additional product terms from other macrocells in the same logic block, apart from a maximum of five
product terms from within the same macrocell.

Figure 9.26 shows the logic diagram of a macrocell typical of macrocells in the logic blocks of most
contemporary CPLDs. The diagram is self-explanatory. There may be minor variations in devices from
different manufacturers. For example, macrocells in the XC-7000 series CPLDs from Xilinx have two
OR gates fed from a two-bit arithmetic logic unit (ALU) and its output feeds a configurable flip-flop.

9.7.2 Applications

Owing to their less flexible internal architecture leading to predictable timing performance, high speed
and a range of logic capacities, CPLDs find extensive use in a wide assortment of applications. These
include the implementation of random glue logic in prototyping small gate arrays, implementing critical
control designs such as graphics controllers, cache control, UARTs, LAN controllers and many more.

CPLDs are fast replacing SPLDs in complex designs. Complex designs using a large number of
SPLDs can be replaced with a CPLD-based design with a much smaller number of devices. This
is particularly attractive in portable applications such as mobile phones, digital assistants and so on.

Programmable Logic Devices 331

CPLD architecture particularly suits those designs that exploit wide AND/OR gates and do not require
a large number of flip-flops.

The reprogramming feature of CPLDs makes the incorporation of design changes very easy. With
the availability of CPLDs having an in-circuit programming feature, it is even possible to reconfigure
the hardware without power down. Changing protocol in a communication circuit could be one such
example. One of the most significant advantages of CPLD architecture comes from its simple SPLD-
like structure, which allows the design to partition naturally into SPLD-like blocks. This leads to a
much more predictable timing or speed performance than would be possible if the design were split
into many pieces and mapped into different areas of the chip.

9.8 Field-Programmable Gate Arrays
As outlined earlier, it is not practical to increase the logic capacity with a CPLD architecture beyond
a certain point. The highest-capacity general-purpose logic chips available today are the traditional
gate arrays, which comprise an array of prefabricated transistors. The chip can be customized during
fabrication as per the user’s logic design by specifying the metal interconnect pattern. These chips
are also referred to as mask-programmable gate arrays (MPGAs). These, however, are not field-
programmable devices. A field-programmable gate array (FPGA) chip is the user-programmable
equivalent of an MPGA chip.

9.8.1 Internal Architecture

An FPGA consists of an array of uncommitted configurable logic blocks, programmable interconnects
and I/O blocks. The basic architecture of an FPGA was shown earlier in Fig. 9.7 when presenting an
overview of programmable logic devices. As outlined earlier, the basic difference between a CPLD
and an FPGA lies in their internal architecture. CPLD architecture is dominated by a relatively smaller
number of programmable sum-of-products logic arrays feeding a small number of clocked flip-flops,
which makes the architecture less flexible but with more predictable timing characteristics. On the
other hand, FPGA architecture is dominated by programmable interconnects, and the configurable logic
blocks are relatively simpler. Logic blocks within an FPGA can be as small as the macrocells in a
PLD, called fine-grained architecture, or larger and more complex, called coarse-grained architecture.
However, they are never as large as the entire PLD like the logic blocks of a CPLD. This feature
makes these devices far more flexible in terms of the range of designs that can be implemented with
these devices.

Contemporary FPGAs have an on-chip presence of higher-level embedded functions and embedded
memories. Some of them even come with an on-chip microprocessor and related peripherals to constitute
what is called a complete ‘system on a programmable chip’. Virtex-II Pro and Virtex-4 FPGA devices
from Xilinx are examples. These devices have one or more PowerPC processors embedded within the
FPGA logic fabric.

Figure 9.27 shows a typical logic block of an FPGA. It consists of a four-input look-up table
(LUT) whose output feeds a clocked flip-flop. The output can either be a registered output or an
unregistered LUT output. Selection of the output takes place in the multiplexer. An LUT is nothing
but a small one-bit wide memory array with its address lines representing the inputs to the logic
block and a one-bit output acting as the LUT output. An LUT with n inputs can realize any logic
function of n inputs by programming the truth table of the desired logic function directly into the
memory.

332 Digital Electronics

FF

Q

clk
Clock

D
O/P

4-input
LUT

Figure 9.27 Logic block of a typical FPGA.

Logic blocks can have more than one LUT and flip-flops also to give them the capability of
realizing more complex logic functions. Figure 9.28 shows the architecture of one such logic block.
The architecture shown in Fig. 9.28 is that of a logic block of the XC4000 series of FPGAs from
Xilinx. This logic block has two four-input LUTs fed with logic block inputs and a third LUT that
can be used in conjunction with the two LUTs to offer a wide range of functions. These include two
separate logic functions of four inputs each, a single logic function of up to nine inputs and many
more. The logic block contains two flip-flops.

Figure 9.29 shows another similar LUT-based architecture that uses multiple LUTs and flip-flops.
The architecture shown in Fig. 9.29 is that of a logic block called a programmable function unit

DD

RD
EC

QD

S/R
Control

DD

RDEC

QD

S/R
Control

Look-up
Table
(LUT)

Look-up
Table
(LUT)

Look-up
Table
(LUT)

Selector

G2
G1

F4
F3

F2

C1 C2 C3 C4

Q2

G

Q1

F

Clock

'1'

'1'

G4
G3

F1

Inputs

Figure 9.28 Logic block architecture of the XC4000 FPGA from Xilinx.

Programmable Logic Devices 333

D FF Q

D FF Q

LUT

LUT

LUT

LUT

Switch
Maxtrix

Inputs

D FF Q

D FF Q

Figure 9.29 Logic block architecture of an AT&T FPGA.

(PFU) by the manufacturer of AT&T FPGA devices. This logic block can be configured either as four
four-input LUTs or two five-input LUTs or one six-input LUT.

9.8.2 Applications

In the early days of their arrival on the scene, FPGAs began as competitors to CPLDs for applications
such as glue logic for PCBs. With increase in their logic capacity and capability, the availability
of a large embedded memory, higher-level embedded functions such as adders and multipliers, the
emergence of hybrid technologies combining the logic blocks and interconnects of traditional FPGAs
with embedded microprocessors and the facility of full or partial in-system reconfiguration have
immensely widened the scope of applications of FPGAs. FPGAs today offer a complete system
solution on a single chip, although very complex systems might be implemented with more than one
FPGA device.

Some of the major application areas of FPGA devices include digital signal processing, data
storage and processing, software-defined radio, ASIC prototyping, speech recognition, computer vision,
cryptography, medical imaging, defence systems, bioinformatics, computer hardware emulation and
reconfigurable computing. Reconfigurable computing, also called customized computing, involves the
use of programmable parts to execute software rather than compiling the software to be run on a regular
CPU. This has been made possible by in-system reconfiguration, which allows the internal design to
be altered on-the-fly.

9.9 Programmable Interconnect Technologies
The programmable features of every PLD, be it simple programmable logic devices (SPLDs) such as
PLAs, PALs and GALs or complex programmable logic devices (CPLDs) or even field-programmable
gate arrays (FPGAs), come from their programmable interconnect structure. Interconnect technologies

334 Digital Electronics

that have evolved over the years for programming PLDs include fuses, EPROM or EEPROM floating-
gate transistors, static RAM and antifuses.

Each one of these is briefly described in the following paragraphs.

9.9.1 Fuse

A fuse is an electrical device that has a low initial resistance and is designed permanently to break an
electrically conducting path when current through it exceeds a specified limit. It uses bipolar technology
and is nonvolatile and one-time programmable. It was the first user-programmable switch developed
for use in PLAs. They were earlier used in smaller PLDs and are now being rapidly replaced by newer
technologies.

9.9.2 Floating-Gate Transistor Switch

This interconnect technology is based on the principle of placing a floating-gate transistor between
two wires in such a way as to facilitate a WIRE-AND function. This concept is used in EPROM and
EEPROM devices, and that is why the floating-gate transistor is sometimes referred to as an EPROM
or EEPROM transistor. Figure 9.30 shows the use of floating-gate transistor interconnects in the AND
plane of a CPLD or SPLD. All those inputs that are required to be part of a particular product term
are activated to drive the product wire to a logic ‘0’ level through the EPROM transistor. For inputs
that are not part of the product term, relevant transistors are switched off.

This technology is commonly used in SPLDs and CPLDs. A floating-gate transistor based switch
matrix, however, requires a large number of interconnects and therefore transistors. For example, a
CPLD with 128 macrocells with four inputs and one output each would require as many as 65 536
interconnects for 100 % routability. A large number of interconnects also adds to the propagation delay.

Input
Wire

Product
Wire

Vcc

Figure 9.30 Floating-gate transistor interconnect.

Programmable Logic Devices 335

The use of multiplexers can reduce this number significantly and can also address the problem of
increased propagation delay. An MUX-based interconnect matrix is being used in CPLDs. CPLD type
XPLA3 from Xilinx is an example.

9.9.3 Static RAM-Controlled Programmable Switches

Static RAM (SRAM) is basically a semiconductor memory, and the word ‘static’ implies that it is a
nonvolatile memory. That is, the memory retains its contents as long as power is on. A SRAM with
m address lines and n data lines is referred to as a 2m × n memory and is capable of storing 2m n-bit
words. Figure 9.31 shows the basic SRAM cell comprising six MOSFET switches, with four of them
connected as cross-coupled inverters. A basic SRAM cell can store one bit of information. The reading
operation is carried out by precharging both the bit lines (BL and BL� to logic ‘1’ and then asserting
the WL line. The writing operation is done by giving the desired logic status to the BL line and its
complement to the BL line and then asserting the WL line.

Figure 9.32 shows the use of SRAM-controlled switches. SRAMs are used to control not only the
gate nodes but also the select inputs of multiplexers that drive the logic block inputs. The figure
illustrates the routing scheme for feeding the output of one logic block to the input of another via
SRAM-controlled pass transistor switches and a SRAM-controlled multiplexer. It may be mentioned
here that a SRAM-controlled programmable interconnect matrix does not necessarily use both pass
transistors and multiplexers. Whether it uses pass transistors or multiplexers or both is product specific.

9.9.4 Antifuse

An antifuse is an electrical device with a high initial resistance and is designed permanently to create
an electrically conducting path typically when voltage across it exceeds a certain level. Antifuses

M3

M4

M6

M2

M1

M5

WL

+VDD

BL BL

Figure 9.31 SRAM cell.

336 Digital Electronics

SRAM

SRAM
SRAM

Logic CellLogic Cell

Logic Cell Logic Cell

Figure 9.32 SRAM-controlled interconnect.

use CMOS technology, which is one of the main reasons for their wide use in PLDs, FPGAs in
particular. A typical antifuse consists of an insulating layer sandwiched between two conducting
layers. In the unprogrammed state, the insulating layer isolates the top and bottom conducting layers.
When programmed, the insulating layer is transformed into a low-resistance link. Typically, metal
is used for conductors and amorphous silicon for the insulator. The application of high voltage
across amorphous silicon permanently transforms it into a polycrystalline silicon–metal alloy having
a low resistance. There are other antifuse structures too, such as that used in the Actel antifuse.
This antifuse, known as PLICE, uses polysilicon and n+ diffusion as conductors and ONO as
insulator. Figure 9.33(a) shows the construction. This type of antifuse is usually triggered by a small
current of the order of a few milliamperes. The high current density produced in the thin insulating
layer produces heat, thus melting the insulating layer and creating an irreversible resistive silicon
link.

Antifuses are widely used as programmable interconnects in PLDs [Fig. 9.33(b)]. Antifuse PLDs
are one-time programmable, in contrast to SRAM-controlled interconnect-based PLDs, which are
reprogrammable. It may be mentioned here that the reprogrammable feature helps the designers fix
logic bugs or add new functions. Antifuse PLDs have advantages of nonvolatility and usually higher
speeds. Antifuses may also be used in PROMs. In that case, each bit contains both a fuse and an
antifuse. The device is programmed by triggering one of the two.

Programmable Logic Devices 337

Oxide

n+ diffusion

Poly-Si

Dielectric

(a)

Wire

Wire

Anti-fuse

(b)

Figure 9.33 (a) Actel’s antifuse and (b) the antifuse as a programmable interconnect.

9.10 Design and Development of Programmable Logic Hardware
In this section, we will briefly discuss the various steps involved in the design and development of
programmable logic hardware. Figure 9.34 shows a block diagram representation of the sequence of
steps involved, in the order in which they are executed.

The process begins with a description of behavioural aspects and the architecture of the intended
hardware. This is done by writing a source code in a high-level hardware description language (HDL)
such as VHDL or Verilog. This step is known as design entry. Although schematic capture is also an
option for design entry, it has been replaced with language-based tools owing to the designs becoming
more and more complex, and also owing to advances in language-based tools.

The most important difference between a hardware and software design is as follows. While software
developers tend to think sequentially, hardware designers must think and program in parallel. All
input signals are processed in parallel as they travel through a series of macrocells and associated
interconnects towards their destination. As a result, statements of HDL create structures, which are
executed at the same time. It may be mentioned here that the transfer of information from macrocell
to macrocell is synchronized to another signal such as a clock.

338 Digital Electronics

Design Entry

Simulation

Design Constraints

Place & Route

Download

Design Library
Synthesis

Figure 9.34 Programmable logic design and development process.

The design entry step is either followed by or interspersed with periodic functional simulation. The
simulator executes the design for a given set of inputs and confirms that the logic is functionally correct.

Hardware compilation comes next. It involves two steps. The first step is synthesis, and the result
of that is a hardware representation called a netlist. The netlist is device independent and its contents
do not depend on the parameters of the PLD to be programmed. It is usually stored in a standard
format called the electronic design interchange format (EDIF). The second step, called place and route,
involves mapping of the logical structure described in the netlist onto actual logic blocks, interconnects
and inputs/outputs. The place and route process produces a bit stream, which is nothing but the binary
data that must be loaded into CPLD/FPGA to make the chip execute the intended hardware design. It
may be mentioned here that each device family has its own proprietary bit stream format.

9.11 Programming Languages
During the PLD development cycle, from design entry to the generation of a bit stream that can
be loaded onto the chip using some kind of electronic programming system, two types of software
program are needed to perform two different functions.

The first is a hardware description language (HDL), which is needed at the design entry stage.
HDL is a software programming language that is used to model or describe the intended operation of
a piece of hardware. In the present case, this is the function that the PLD chip is intended to perform
after it is programmed. It may be worth mentioning here that modern computer languages, including
both hardware description languages and high-level programming languages, almost invariably contain
declarative and executable statements, and the hardware description languages are particularly rich
in the former. If we compare the results of a high-level programming language such as C++ and
an HDL, it will be an executable program in the case of the former and declarative in the case
of the latter. Hardware description languages that have evolved over the years include ABEL-HDL,

Programmable Logic Devices 339

VHDL (VHSIC HDL), Verilog and JHDL (Java HDL). VHSIC stands for Very High-Speed Integrated
Circuit.

The second type of software program is a computer program, called a logic compiler, that is used
to transform a source code written in HDL into a bit stream. Logic compilers are available from
manufacturers or third-party vendors. In the paragraphs to follow, we will briefly describe each of the
hardware description languages mentioned above.

9.11.1 ABEL-Hardware Description Language

ABEL-HDL from DATA I/O was intended for relatively simpler PLD circuit designs that could be
implemented on SPLDs. ABEL allows the designers to describe the digital circuit designs expressed
in the form of truth tables, Boolean functions, state diagrams or any combination of these. It also
allows the designer to optimize the design through design validation without specifying a device. In
other words, ABEL-HDL facilitates writing hardware-independent programs, and it is only after the
design verification and optimization have taken place that the PLD device is chosen. The source code
written in the ABEL environment is in standard format to have interface compatibility with other
tools.

9.11.2 VHDL-VHSIC Hardware Description Language

VHDL is the most widely used hardware description language used for the purpose of describing
complex digital circuit designs that would be implemented on CPLDs and FPGAs. VHDL was originally
developed to document the behaviour of ASICs used by various manufacturers in their equipment. It
was subsequently followed by the development of logic simulation and synthesis tools that could read
VHDL files and output a definition of the physical implementation of the circuit. With modern synthesis
tools capable of extracting various digital building blocks such as counters, RAMs, arithmetic blocks,
etc., and implementing them as specified by the user, the same VHDL code could be synthesized
differently for optimum performance.

VHDL is a strongly typed language. One of the key features of VHDL is that it allows the behaviour
of the intended hardware to be described and then verified before the design is translated into actual
hardware with the help of synthesis tools. Another feature of VHDL that makes it attractive for digital
system design is that it allows description of a concurrent system.

9.11.3 Verilog

Verilog, like VHDL, supports design, design validation and subsequent implementation of analogue,
digital and mixed signal circuits at various levels of abstraction. Verilog-based design consists of a
hierarchy of modules whose behaviour is defined by concurrent and sequential statements. Sequential
statements are placed inside a ‘begin/end’ block and sequential statements contained inside the block
are executed sequentially. All concurrent statements and all ‘begin/end’ blocks in the design are
executed in parallel. A subset of statements in Verilog is synthesizable. Therefore, if in a given design
the different modules use only synthesizable statements, the design can be translated into a netlist,
which can further be translated into a bit stream.

Verilog has some similarities and dissimilarities with C-language. It has a similar preprocessor,
similar major control keywords like ‘if’, ‘while’, etc., and also a similar formatting mechanism in the
printing routines and language operators. Dissimilarities include the use of ‘begin/end’ instead of curly

340 Digital Electronics

braces to define a block of code, and also that Verilog does not have structures, pointers and recursive
subroutines. Also, the definition of constants in Verilog requires bit width along with their base.

9.11.4 Java HDL

Java HDL (JHDL) was developed in the Configurable Computing Laboratory of Brigham Young
University (BYU). It is a low-level hardware description language that primarily uses an object-oriented
approach to build circuits. It was developed primarily for the design of FPGA-based hardware, and
developers have paid particular attention to supporting the Xilinx series of FPGA chips.

9.12 Application Information on PLDs
In this section, we will look at salient features of some of the commonly used programmable logic
devices including SPLDs such as PALs/GALs, CPLDs and FPGAs covering a wide spectrum of devices
from leading international manufacturers. Other application-relevant information such as internal
architecture, pin connection diagram, etc., is also given for some of the more popular type numbers.

9.12.1 SPLDs

Some of the famous companies that offer SPLDs include Advanced Micro Devices (AMD), Altera,
Philips-Signetics, Cypress, Lattice Semiconductor Corporation and ICT. A large range of SPLD
products are available from these companies. All of these SPLDs share some common features in
terms of the nature of the programmable logic planes, configurable output logic, etc. However, each
of these logic devices does offer some unique features that make it particularly attractive for some
applications. Some of the widely exploited SPLDs include the 16XX series (16L8, 16R8,16R6 and
16R4) and 22V10 from AMD and EP610 from Altera. These devices are also widely second-sourced
by many companies. The Plus 16XX series from Philips is 100 % pin and functional compatible with
the 16XX series. 16R8 in the 16XX series and 22V10 PAL devices are industry standards and are
widely second-sourced. We will discuss 16XX and 22V10 in a little more detail in the following
paragraphs.

The 16XX family of PAL devices employs the familiar sum-of-products implementation comprising
a programmable AND array and a fixed OR array. The family offers four PAL-type devices including
16L8, 16R8, 16R6 and 16R4.

Each of the devices in the 16XX family is characterized by a certain number of combinational
and registered outputs available to the designer. The devices have three-state output buffers on each
output pin, which can be programmed for individual control of all outputs. Other features include
the availability of programmable bidirectional pins and output registers. These devices are capable
of replacing an equivalent of four or more SSI/MSI integrated circuits. The I/O configuration of the
four devices in the 16XX family is summarized in Table 9.5. Figures 9.35(a) to (d) give the basic
architecture/pin connections of 16L8, 16R8, 16R6 and 16R4 respectively.

As outlined earlier, many companies offer 22V10 PAL devices. These are available in both bipolar
and CMOS technologies. One such contemporary device is GAL 22V10 from Lattice Semiconductor
Corporation. As inherent in the type number, the device offers a maximum of 22 inputs and 10 outputs.
The outputs are versatile. That is, each one of them can be configured by the user to be either a
combinational or registered output. Also, the outputs can be configured to be either active HIGH or
active LOW.

Programmable Logic Devices 341

Table 9.5 Input/output configuration of the 16XX family.

Device number Dedicated
inputs

Combinational
outputs

Registered
outputs

16L8 10 8 (6 I/O) 0
16R8 8 0 8
16R6 8 2 I/O 6
16R4 8 4 I/O 4

2

10

9

8

7

6

5

4

I0

3

11

12

13

14

15

16

17

20

18

19

1

I1

I2

I3

I4

I5

I6

I7

I8

GND

Vcc

O7

B6

B5

B4

B3

B2

B1

O0

I9

AND
OR

Array

(a)

Figure 9.35 Basic architecture/pin connections of the 16XX-series PAL devices.

342 Digital Electronics

2

10

9

8

7

6

5

4

CLK

3

11

12

13

14

15

16

17

20

18

19

1

I0

I1

I2

I3

I4

I5

I6

I7

GND

Vcc

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

OE

AND
OR

Array

Q
D Q

Q
D Q

Q
D Q

Q
D Q

Q
D Q

Q
D Q

Q
D Q

Q
D Q

(b)

Figure 9.35 (continued).

GAL 22V10 uses E2CMOS (electrically erasable CMOS) technology which allows the device to
be reprogrammable through the use of an electrically erasable (E2� floating-gate technology and
consume much less power compared with bipolar 22V10 devices owing to the use of advanced CMOS
technology. The device specifies 100 erase/write cycles, a 50–75 % saving in power consumption
compared with bipolar equivalents and a maximum propagation delay of 4 ns. Each of the output
logic macrocells offers two primary functional modes, which include combinational I/O and registered
modes. The type of mode (whether combinational I/O or registered) and the output polarity (whether
active HIGH or active LOW) are decided by the selection inputs S0 and S1, which are normally
controlled by the logic compiler. For S1S0 equal to 00, 01, 10 and 11, outputs are active LOW registered,
active LOW combinational, active HIGH registered and active HIGH combinational respectively.

Programmable Logic Devices 343

2

10

9

8

7

6

5

4

CLK

3

11

12

13

14

15

16

17

20

18

19

1

I0

I1

I2

I3

I4

I5

I6

I7

GND

Vcc

B7

Q6

Q5

Q4

Q3

Q2

Q1

B0

OE

AND
OR

Array

Q
D Q

Q
D Q

Q
D Q

Q
D Q

Q
D Q

Q
D Q

(c)

Figure 9.35 (continued).

Figure 9.36 shows the basic architecture and pin connection diagram of GAL 22V10. The internal
architecture of the output logic macrocell (OLMC) shown as a block in Fig. 9.36 is given in Fig. 9.37.

9.12.2 CPLDs

Major CPLD manufacturers include Altera, Lattice Semiconductor Corporation, Advanced Micro
Devices, ICT, Cypress and Xilinx. A large variety of CPLD devices are available from these companies.
In the following paragraphs, some of the popular type numbers of CPLDs offered by some of these
companies are examined in terms of their characteristic features.

We will begin with CPLDs from Altera. Altera offers three families of CPLDs. These include MAX-
5000, MAX-7000 and MAX-9000. MAX-5000 uses an older technology and is used in applications

344 Digital Electronics

2

10

9

8

7

6

5

4

CLK

3

11

12

13

14

15

16

17

20

18

19

1

I0

I1

I2

I3

I4

I5

I6

I7

GND

Vcc

B7

B6

Q5

Q4

Q3

Q2

B1

B0

OE

AND
OR

Array

Q
D Q

Q
D Q

Q
D Q

Q
D Q

(d)

Figure 9.35 (continued).

where the designer is looking for cost-effective solutions. The MAX-7000 series of CPLDs are the most
widely used ones. MAX-9000 is similar to MAX-7000 except for its higher logic capacity. MAX-7000
series devices use advanced CMOS technology and (E2PROM)-based architecture and offer densities
from 32 to 512 macrocells with pin-to-pin propagation delays as small as 3.5 ns. MAX-7000 devices
support in-system programmability and are available with 5.0, 3.3 and 2.5 V core operating voltages.
There are three types of device in the MAX-7000 series. These include MAX-7000S, MAX-7000AE
and MAX-7000B. Three types are pin-to-pin compatible when used in the same package. Figure 9.38
shows the basic architecture of the MAX-7000 series of CPLDs.

AMD offers the Mach-1 to Mach-5 series of CPLDs. While Mach-1 and Mach-2 are configured
around 22V10 PALs, Mach-3 and Mach-4 use 34V16 PALs. Mach-5 is similar to the Mach-4
CPLD except that it offers higher speed performance. All Mach devices use E2PROM technology.

Programmable Logic Devices 345

OLMC
I/O/QI

8

RESET

OLMC

I/O/Q

10

OLMC
I/O/Q

12

OLMC
I/O/Q

14

OLMC
I/O/Q

16

OLMC
I/O/Q

16

OLMC
I/O/Q

14

OLMC

I/O/Q

12

OLMC
I/O/Q

10

OLMC
I/O/Q

8

P
ro

g
ra

m
m

ab
le

A
N

D
-A

rr
ay

(1
32

X
44

)

PRESET

I/CLK

1 24

12 13

I/CLK

I

I

I

I

I

I

I

I

I

I

GND

Vcc

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I/O/Q

I

GAL
22V10

I

I/O/Q

I/O/Q

I/O/Q

NC

I/O/Q

I/O/Q

I/O/Q

25

23

21

19
18161412

11

9

7

5
4

I

I

I

I

I

I

NC

26282

I I I

N
C

I/O
/Q

I/O
/QG
N

D

I I V
cc

N
C

I/O
/Q

I/O
/Q

I/C
LK

GAL22V10
Top View

I

I

I

I

I

I

I

I

I

I

6

18

Figure 9.36 Basic architecture and pin connections of 22V10.

346 Digital Electronics

4 to 1
MUX

D

Q

Q

2 to 1
MUX

AR

SP

CLK

Figure 9.37 Architecture of an output GAL 22V10 logic macrocell.

Figure 9.39 shows the basic architecture of Mach-4 CPLDs. The number of 34V16-like PALs
used varies from 6 to 16. Each 34V16-like PAL block consists of a maximum of 34 inputs and
16 outputs. The 34 inputs include 16 outputs that are fed back. All connections in the case of
Mach-4 CPLDs, from one PAL block to another and also from a PAL block back to itself, are
routed through a central switching matrix, on account of which all connections travel through the
same path. This feature gives more predictable time delays in circuits implemented on Mach-4
devices.

Lattice offers the pLSI and ispLSI 1000-series, 2000-series and 3000-series of CPLDs. ispLSI
devices are similar to pLSI devices except that they are in-system programmable. The three series
of devices differ mainly in logic capacities and speed performance. The logic capacity in the case of
the 1000-series CPLDs ranges from about 1200 to 4000 gates, and the pin-to-pin propagation delay
is of the order of 10 ns. The ispLSI-1016 CPLD is one such device from the 1000-series of devices.
It has a logic capacity of 2000 PLD gates and a pin-to-pin propagation delay of 7.5 ns. The device
has four dedicated inputs, 32 universal I/O pins and 96 registers. It uses high-performance E2CMOS
technology, because of which it offers reprogrammability of the logic as well as the interconnects to
provide truly reconfigurable systems.

The 2000-series devices have a logic capacity of 600–2000 equivalent gates that offer a higher ratio
of macrocells to I/O pins. With a pin-to-pin propagation delay of 5.5 ns, they offer a higher speed
performance compared with 1000-series devices. Of the three device families, the 3000-series has the
highest logic capacity (up to 5000 equivalent gates). The propagation delay is in the range 10–15 ns.
The 3000-series of devices offers some enhancements over the other two series of CPLDs to support
more recent design approaches.

Programmable Logic Devices 347

Logic
Block

I/O
Block

PIA

Figure 9.38 MAX-7000 series CPLD architecture.

FLASH-370 from Cypress is yet another popular class of CPLDs. FLASH-370 CPLDs use FLASH
E2PROM technology. Devices are not in-system programmable. One of the salient features of these
devices is that they provide more inputs/outputs than the competing products featuring a linear
relationship between the number of macrocells and the number of bidirectional I/O pins. FLASH-
370 has a typical CPLD architecture as shown in Fig. 9.40, with multiple PAL-like blocks and a
programmable interconnect matrix to connect them.

Xilinx, although mainly known for their range of FPGAs, offer CPLDs too. Major families of
CPLDs from Xilinx include the XC-7000, CoolRunner and XC-9500 in-system programmable family
of devices. The XC-7000 family of CPLDs further comprises two major series, namely XC-7200
and XC-7300. XC-7300 is an enhanced version of XC-7200 in terms of gate capacity and speed

348 Digital Electronics

I/O (8)

I/O (8)

I (12)

I/O (8)

I/O (8)

I/O (32)

Central Switch
Matrix

34V16 PAL

I/O (8)

I/O (8)

clk (4)

I/O (8)

I/O (8)

I/O (32)

Figure 9.39 Mach-4 CPLD architecture.

performance. XC-7200 offers a logic capacity of 600–1500 gates with a speed performance of 25 ns
pin-to-pin propagation delay. XC-7300 offers a gate capacity of up to 3000 gates. Each device in the
XC-7000 family contains SPLD-like logic blocks, with each block having nine macrocells. A notable
difference between the XC-7000 family of CPLDs and their counterparts from other manufacturers is
that each macrocell has two OR gates whose outputs feed a two-bit arithmetic logic unit (ALU), which
in turn can generate any function of its two inputs. The ALU output feeds a configurable flip-flop.

The CoolRunner family of CPLDs is characterized by high speed (5 ns pin-to-pin propagation delay)
and low power consumption (100 �A of standby current). The family includes the XPLAE series of
devices, available in 32, 64 and 128 macrocell versions, the XPLA2-series, which is SRAM-based and
available in 320 and 920 macrocell capacities, and the XPLA3 series, available in 32, 64, 128, 256
and 384 macrocell versions.

The XC-9500 family of devices comprises the XC-9536, XC-9572, XC-95108, XC-95144, XC-
95216 and XC-95288 series of CPLDs. The family offers a logic capacity ranging from 800 gates (in
the case of XC-9536) to 6400 gates (in the case of XC-95288), with a propagation delay varying from 5
ns (in the case of XC-9536) to 15 ns (in the case of XC-95288). Architectural features of the XC-9500
family of CPLDs provide in-system programmability with a minimum of 10 000 program/erase cycles.
Other features include output slew rate control and user-programmable ground pins, which help reduce
system noise.

Programmable Logic Devices 349

Programmable
Interconnect
Matrix (PIM)

Macrocells
and I/O

pins
I/Os

Macrocells
and I/O

pins
I/Os

Macrocells
and I/O

pins
I/Os

Macrocells
and I/O

pins
I/Os

Macrocells
and I/O

pins
I/Os

Macrocells
and I/O

pins
I/Os

Macrocells
and I/O

pins
I/Os

Macrocells
and I/O

pins
I/Os

Clock

Figure 9.40 FLASH-370 CPLD architecture.

9.12.3 FPGAs

There are two broad categories of FPGAs, namely SRAM-based FPGAs and antifuse-based FPGAs.
While Xilinx and Altera are the major players in the former category, antifuse-based devices are offered
mainly by Xilinx, Actel, Quicklogic and Cypress. FPGAs were introduced by Xilinx with the XC-2000
series of devices, which have been subsequently followed up by the XC-3000 series, XC-4000 series
and XC-5000 series of devices. Of all these, the XC-4000 series is the most widely used one. These
are all SRAM-based. Xilinx has also introduced an antifuse-based FPGA family of FPGAs called
XC-8100.

The basic architecture of the XC-4000 family is built around a two-dimensional array of configurable
logic blocks (CLBs) that can be interconnected by horizontal and vertical routing channels and are
surrounded by a perimeter of programmable input/output blocks (IOBs). CLBs provide the functional
elements for constructing the user-desired logic function, and IOBs provide the interface between
the package pins and internal signal lines. These devices are reconfigurable and are in-system
programmable. Table 9.6 gives salient features of the XC-4000X and XC-4000E series of FPGAs.

Altera offers the FLEX-8000 and FLEX-10000 series of FPGAs. FLEX-8000 is SRAM-based. It
combines the fine-grained architecture and high register count characteristics of FPGAs with the high
speed and predictable interconnect timing delays of CPLDs. The basic logic element comprises a
four-input look-up table (LUT) that provides combinational capability and a programmable register
that provides sequential capability. Table 9.7 outlines salient features of the FLEX-8000 series
of devices.

The FLEX-10000 series offers all the features of FLEX-8000 series devices, with the addition of
variable-sized blocks of SRAM called embedded array blocks (EABs). Each of the EABs can be

350 Digital Electronics

Table 9.6 Salient features of the XC-4000X and XC-4000E series of FPGAs.

Device Logic Maximum CLB Number Number Maximum
number cells logic gates matrix of CLBs of flip-flops user I/Os

(no RAM)

XC4002XL 152 1 600 8 × 8 64 256 64
XC4003E 238 3 000 10 × 10 100 360 80
XC4005E/XL 466 5 000 14 × 14 196 616 112
XC4006E 608 6 000 16 × 16 256 768 128
XC4008E 770 8 000 18 × 18 324 936 144
XC4010E/XL 950 10 000 20 × 20 400 1120 160
XC4013E/XL 1368 13 000 24 × 24 576 1536 192
XC4020E/XL 1862 20 000 28 × 28 784 2016 224
XC4025E 2432 25 000 32 × 32 1024 2560 256
XC4028EX/ 3078 28 000 32 × 32 1024 2560 256
XC4036EX/XL 3078 36 000 36 × 36 1296 3168 288
XC4044XL 3800 44 000 40 × 40 1600 3840 320
XC4052 4598 52 000 44 × 44 1936 4576 352
XC4062XL 5472 62 000 48 × 48 2304 5376 384
XC4085 7448 85 000 56 × 56 3136 7168 448

Table 9.7 Salient features of the FLEX-8000 series of devices.

Device number Usable Gates Flip-flops Logic Array
Blocks
(LAB)

Logic
Elements
(LE)

Maximum User I/O PIns

EPF 8282A/AV 2 500 282 26 208 78
EPF 8452A 4 000 452 42 336 120
EPF 8636A 6 000 636 63 504 136
EPF 8820A 8 000 820 84 672 152
EPF 81188A 12 000 1188 126 1008 184
EPF 81500A 16 000 1500 162 1296 208

configured to serve as an SRAM block with a variable aspect ratio of 256 × 8, 512 × 4, 1K × 2 or
2K × 1.

AT&T offers SRAM-based FPGAs that are similar in architecture to those offered by Xilinx. The
overall structure is called an optimized reconfigurable cell array (ORCA). The basic logic block is
referred to as a programmable function unit (PFU). Similarities with the Xilinx-4000 series FPGAs
include arithmetic circuitry being a part of the PFU and PFU configurability as a RAM. The PFU
can be configured as either four four-input LUTs or as two five-input LUTs or as one six-input LUT.
When configured as four-input LUTs, it is essential that the various LUT inputs come from the same
PFU input. Although on the one hand this reduces the functionality of the PFU, on the other hand it
significantly reduces the associated wiring cost.

Actel FPGAs use antifuse technology. Actel offers three main families of FPGA devices, namely
Act-1, Act-2 and Act-3. All three series of devices have similar features. The structure is similar to that

Programmable Logic Devices 351

I/O Blocks

I/O Blocks

I/O
B

lo
ck

s

I/O
B

lo
ck

s

Routing
Channels

Logic
Block
Rows

(a)

Input
Multiplexer-based

Circuit Block Output

(b)

Inputs

Figure 9.41 Actel FPGA.

of traditional gate arrays comprising logic blocks arranged in horizontal rows with horizontal routing
channels between adjacent rows, as shown in Fig. 9.41(a). Actel chips also have vertical wires that
overlay the logic blocks to provide signal paths that span multiple rows. These are not shown in Fig.
9.41(a). The logic block is not LUT based. Instead, it comprises an AND gate and an OR gate feeding
a multiplexer circuit block, as shown in Fig. 9.41(b). The multiplexer circuit, along with the two gates,
can realize a large range of logic functions. In the case of Act-3 FPGAs, 50 % of the logic blocks also
contain a flip-flop.

352 Digital Electronics

A1
A2
A3
A4
A5
A6

S
Q

D

R

FF

0

1

0

1

0

1

F
F
F
F
F

1
2
3
4
5

F6

AZ

QZ

NZ

FZ

QS

QC

QR

Figure 9.42 Quicklogic FPGA logic block.

Quicklogic also offers antifuse-based FPGAs, like Actel. They offer two families of devices, namely
pASIC and pASIC-2. pASIC-2 is an enhanced version of pASIC. The overall structure is array based
like the Xilinx FPGAs. The logic blocks are similar to those used in the Actel FPGAs, although more
complex than their Actel counterparts. Also, each logic block contains a flip-flop. Figure 9.42 shows
the architecture.

Review Questions
1. How does a programmable logic device differ from a fixed logic device? What are the primary

advantages of using programmable logic devices?
2. Distinguish between a programmable logic array (PLA) device and a programmable array logic

(PAL) device in terms of architecture and capability to implement Boolean functions.
3. How does a generic array logic (GAL) device differ from its PAL counterpart? Do they differ in

their internal architecture? If yes, then how?
4. What are complex programmable logic devices (CPLDs)? Briefly outline salient features of these

devices and application areas where these devices fit the best.
5. How does the architecture of a typical FPGA device differ from that of a CPLD? In what way does

the architecture affect the timing performance in the two cases?

Programmable Logic Devices 353

6. What are the various interconnect technologies used for the purpose of programming PLDs? Briefly
describe each one of them.

7. What is a hardware description language? What are the requirements of a good HDL? Briefly
describe the salient features of VHDL and Verilog.

8. What do you understand by the following as regards programmable logic devices?

(a) combinational and registered outputs;
(b) configurable output logic cell;
(c) reprogrammable PLD;
(d) in-system programmability.

Problems
1. Figure 9.43 shows a portion of the internal logic diagram of a certain PAL device that uses

antifuse interconnect technology. In the diagram shown, a cross (×� represents an unprogrammed
interconnect and the absence of a cross (×� at an intersection of input and product lines represents
programmed interconnects; a dot (•) represents a hard-wired interconnect. Write (a) the Boolean
expression for Y and (b) the Boolean expression for Y if the interconnect technology were fuse
based.

(a) Y = A�B+A�B; (b) the same as in the case of (a)

BA

Y

Figure 9.43 Problem 1.

2. Determine the size of PROM required for implementing the following logic circuits.

(a) 16-to-1 multiplexer;
(b) four-bit binary adder.

(a) 1M×1; (b) 512×5

354 Digital Electronics

3. Determine the number of programmable interconnections in the following programmable logic
devices.

(a) 1K × 4 PROM;
(b) PLA device with four input variables, 32 AND gates and four OR gates;
(c) PAL device with eight input variables, 16 AND gates and four OR gates.

(a) 4096; (b) 384; (c) 256

4. A and B are two binary variables. The objective is to design a magnitude comparator to produce
A = B, A < B and A > B outputs. Design a suitable PLD with a PAL-like architecture using
anti-fuse based interconnects.

Fig. 9.44

BA

A=B A<B A>B

Figure 9.44 Answer to problem 4.

5. Figure 9.45 shows a programmed PAL device using fuse-based interconnects. Examine the logic
diagram and determine the logic block implemented by the PLD. A cross (×� represents an
unprogrammed interconnection and a dot (•) represents a hard-wired interconnection.

Full adder

Programmable Logic Devices 355

CBA

X Y

Figure 9.45 Problem 5.

Further Reading
1. Seals, R. C. and Whapshott, G. F. (1997) Programmable Logic: PLDs and FPGAs, McGraw-Hill, USA.
2. Dueck, R. (2003) Digital Design with CPLD Applications and VHDL, Thomson Delmar Learning, New York,

USA.
3. Chartrand, L. (2003) Digital Fundamentals: Experiments and Concepts with CPLD, Thomson Delmar Learning,

New York, USA.
4. Oldfield, J. and Dorf, R. (1995) Field Programmable Gate Arrays, John Wiley & Sons, Inc., New York, USA.
5. Trimberger, S. (Ed.) (1994) Field Programmable Gate Array Technology, Kluwer Academic Publishers, MA,

USA.
6. Brown, S., Francis, R., Rose, J. and Vranesic, Z. (1992) Field Programmable Gate Arrays, Kluwer Academic

Publishers, MA, USA.

10
Flip-Flops and Related Devices

Having discussed combinational logic circuits at length in previous chapters, the focus in the present
chapter and in Chapter 11 will be on sequential logic circuits. While a logic gate is the most basic
building block of combinational logic, its counterpart in sequential logic is the flip-flop. The chapter
begins with a brief introduction to different types of multivibrator, including the bistable multivibrator,
which is the complete technical name for a flip-flop, the monostable multivibrator and the astable
multivibrator. The flip-flop is not only used individually for a variety of applications; it also forms
the basis of many more complex logic functions. Counters and registers, to be covered in Chapter 11
are typical examples. There is a large variety of flip-flops having varying functional tables, input
clocking requirements and other features. In this chapter, we will discuss all these basic types of
flip-flop in terms of their functional aspects, truth tables, salient features and application aspects. The
text is suitably illustrated with a large number of solved examples. Application-relevant information,
including a comprehensive index of flip-flops and related devices belonging to different logic families,
is given towards the end of the chapter. Pin connection diagrams and functional tables are given in the
companion website.

10.1 Multivibrator
Multivibrators, like the familiar sinusoidal oscillators, are circuits with regenerative feedback, with the
difference that they produce pulsed output. There are three basic types of multivibrator, namely the
bistable multivibrator, the monostable multivibrator and the astable multivibrator.

10.1.1 Bistable Multivibrator

A bistable multivibrator circuit is one in which both LOW and HIGH output states are stable.
Irrespective of the logic status of the output, LOW or HIGH, it stays in that state unless a change is

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

358 Digital Electronics

+V

V =Vo2 c2

Q2

Ic2
CC

R1

Ic1

Rc

V =Vo1 c1

–V

R2 R2

Q1

Rc

R1

Figure 10.1 Bistable multivibrator.

induced by applying an appropriate trigger pulse. As we will see in the subsequent pages, the operation
of a bistable multivibrator is identical to that of a flip-flop. Figure 10.1 shows the basic bistable
multivibrator circuit. This is the fixed-bias type of bistable multivibrator. Other configurations are the
self-bias type and the emitter-coupled type. However, the operational principle of all types is the same.
The multivibrator circuit of Fig. 10.1 functions as follows.

In the circuit arrangement of Fig. 10.1 it can be proved that both transistors Q1 and Q2 cannot be
simultaneously ON or OFF. If Q1 is ON, the regenerative feedback ensures that Q2 is OFF, and when
Q1 is OFF, the feedback drives transistor Q2 to the ON state. In order to vindicate this statement, let us
assume that both Q1 and Q2 are conducting simultaneously. Owing to slight circuit imbalance, which
is always there, the collector current in one transistor will always be greater than that in the other. Let
us assume that Ic2 > Ic1� Lesser Ic1 means a higher Vc1� Since Vc1 is coupled to the Q2 base, a rise in
Vc1 leads to an increase in the Q2 base voltage. Increase in the Q2 base voltage results in an increase
in Ic2 and an associated reduction in Vc2� Reduction in Vc2 leads to a reduction in Q1 base voltage and
an associated fall in Ic1, with the result thatVc1 increases further. Thus, a slight circuit imbalance has
initiated a regenerative action that culminates in transistor Q1 going to cut-off and transistor Q2 getting
driven to saturation. To sum up, whenever there is a tendency of one of the transistors to conduct more
than the other, it will end up with that transistor going to saturation and driving the other transistor
to cut-off. Now, if we take the output from the Q1 collector, it will be LOW (= VCE1 sat.) if Q1 was
initially in saturation. If we apply a negative-going trigger to the Q1 base to cause a decrease in its
collector current, a regenerative action would set in that would drive Q2 to saturation and Q1 to cut-off.
As a result, the output goes to a HIGH (= +VCC� state. The output will stay HIGH until we apply
another appropriate trigger to initiate a transition. Thus, both of the output states, when the output is
LOW and also when the output is HIGH, are stable and undergo a change only when a transition is
induced by means of an appropriate trigger pulse. That is why it is called a bistable multivibrator.

10.1.2 Schmitt Trigger

A Schmitt trigger circuit is a slight variation of the bistable multivibrator circuit of Fig. 10.1. Figure
10.2 shows the basic Schmitt trigger circuit. If we compare the bistable multivibrator circuit of Fig. 10.1

Flip-Flops and Related Devices 359

Vcc

Vo

Q2

C

R2

Rc1

Vin

Re R1

Q1

Rc2

Figure 10.2 Schmitt trigger circuit.

with the Schmitt trigger circuit of Fig. 10.2, we find that coupling from Q2 collector to Q1 base in the
case of a bistable circuit is absent in the case of a Schmitt trigger circuit. Instead, the resistance Re

provides the coupling. The circuit functions as follows.
When Vin is zero, transistor Q1 is in cut-off. Coupling from Q1 collector to Q2 base drives transistor

Q2 to saturation, with the result that Vo is LOW. If we assume that VCE2 (sat.) is zero, then the voltage
across Re is given by the equation

Voltage across Re = �VCC�Re/�Re +Rc2�� (10.1)

This is also the emitter voltage of transistor Q1. In order to make transistor Q1 conduct, Vin must be
at least 0.7 V more than the voltage across Re. That is,

Vin�min�� = �VCC�Re/�Re +Rc2��+0�7 (10.2)

When Vin exceeds this voltage, Q1 starts conducting. The regenerative action again drives Q2 to cut-off.
The output goes to the HIGH state. Voltage across Re changes to a new value given by the equation

Voltage across Re = �VCC�Re/�Re +Rc1�� (10.3)

Vin = �VCC�Re/�Re +Rc1��+0�7 (10.4)

Transistor Q1 will continue to conduct as long as Vin is equal to or greater than the value given by
Equation (10.4). If Vin falls below this value, Q1 tends to come out of saturation and conduct less
heavily. The regenerative action does the rest, with the process culminating in Q1 going to cut-off
and Q2 to saturation. Thus, the state of output (HIGH or LOW) depends upon the input voltage level.

360 Digital Electronics

Vin

VUTVLT

VCE (sat)
@

Vcc

Vo

0

Figure 10.3 Transfer characteristics of a Schmitt trigger.

The HIGH and LOW states of the output correspond to two distinct input levels given by Equations
(10.2) and (10.4) and therefore the values of Rc1,Rc2,Re and VCC� The Schmitt trigger circuit of Fig.
10.2 therefore exhibits hysteresis. Figure 10.3 shows the transfer characteristics of the Schmitt trigger
circuit. The lower trip point VLT and the upper trip point VUT of these characteristics are respectively
given by the equations

VLT = �VCC�Re/�Re +Rc1��+0�7 (10.5)

VUT = �VCC�Re/�Re +Rc2��+0�7 (10.6)

10.1.3 Monostable Multivibrator

A monostable multivibrator, also known as a monoshot, is one in which one of the states is stable
and the other is quasi-stable. The circuit is initially in the stable state. It goes to the quasi-stable state
when appropriately triggered. It stays in the quasi-stable state for a certain time period, after which
it comes back to the stable state. Figure 10.4 shows the basic monostable multivibrator circuit. The
circuit functions as follows. Initially, transistor Q2 is in saturation as it gets its base bias from +VCC

through R� Coupling from Q2 collector to Q1 base ensures that Q1 is in cut-off. Now, if an appropriate
trigger pulse induces a transition in Q2 from saturation to cut-off, the output goes to the HIGH state.
This HIGH output when coupled to the Q1 base turns Q1 ON. Since there is no direct coupling from
Q1 collector to Q2 base, which is necessary for a regenerative process to set in, Q1 is not necessarily

Flip-Flops and Related Devices 361

Q2

C

RRc1

–V

R2

Q1

RC2

R1

+VCC

C1

Vo

Figure 10.4 Monostable multivibrator.

in saturation. However, it conducts some current. The Q1 collector voltage falls by Ic1Rc1 and the Q2

base voltage falls by the same amount, as the voltage across a capacitor (C in this case) cannot change
instantaneously. To sum up, the moment we applied the trigger, Q2 went to cut-off and Q1 started
conducting. But now there is a path for capacitor C to charge from VCC through R and the conducting
transistor. The polarity of voltage across C is such that the Q2 base potential rises. The moment the Q2

base voltage exceeds the cut-in voltage, it turns Q2 ON, which, owing to coupling through R1, turns
Q1 OFF. And we are back to the original state, the stable state. Whenever we trigger the circuit into
the other state, it does not stay there permanently and returns back after a time period that depends
upon R and C. The greater the time constant RC, the longer is the time for which it stays in the other
state, called the quasi-stable state.

10.1.3.1 Retriggerable Monostable Multivibrator

In a conventional monostable multivibrator, once the output is triggered to the quasi-stable state by
applying a suitable trigger pulse, the circuit does not respond to subsequent trigger pulses as long as
the output is in quasi-stable state. After the output returns to its original state, it is ready to respond
to the next trigger pulse. There is another class of monostable multivibrators, called retriggerable
monostable multivibrators. These respond to trigger pulses even when the output is in the quasi-stable
state. In this class of monostable multivibrators, if n trigger pulses with a time period of Tt are
applied to the circuit, the output pulse width, that is, the time period of the quasi-stable state, equals
(n− 1)Tt +T , where T is the output pulse width for the single trigger pulse and Tt < T . Figure 10.5
shows the output pulse width in the case of a retriggerable monostable multivibrator for repetitive trigger
pulses.

362 Digital Electronics

Trigger Pulses

Output Pulse

Tt T

Figure 10.5 Retriggerable monostable multivibrator output for repetitive trigger pulses.

10.1.4 Astable Multivibrator

In the case of an astable multivibrator, neither of the two states is stable. Both output states are quasi-
stable. The output switches from one state to the other and the circuit functions like a free-running
square-wave oscillator. Figure 10.6 shows the basic astable multivibrator circuit. It can be proved that,
in this type of circuit, neither of the output states is stable. Both states, LOW as well as HIGH, are
quasi-stable. The time periods for which the output remains LOW and HIGH depends upon R2C2 and
R1C1 time constants respectively. For R1C1 = R2C2, the output is a symmetrical square waveform.
The circuit functions as follows. Let us assume that transistor Q2 is initially conducting, that is, the
output is LOW. Capacitor C2 in this case charges through R2 and the conducting transistor from VCC,
and, the moment the Q1 base potential exceeds its cut-in voltage, it is turned ON. A fall in Q1 collector

C1 C2
Vo

VCC

Rc2R2

Q1

Rc1

Q2

R1

Figure 10.6 Astable multivibrator.

Flip-Flops and Related Devices 363

potential manifests itself at the Q2 base as voltage across a capacitor cannot change instantaneously.
The output goes to the HIGH state as Q2 is driven to cut-off. However, C1 has now started charging
through R1 and the conducting transistor Q1 from VCC. The moment the Q2 base potential exceeds
the cut-in voltage, it is again turned ON, with the result that the output goes to the LOW state. This
process continues and, owing to both the couplings (Q1 collector to Q2 base and Q2 collector to Q1

base) being capacitive, neither of the states is stable. The circuit produces a square-wave output.

10.2 Integrated Circuit (IC) Multivibrators
In this section, we will discuss monostable and astable multivibrator circuits that can be configured
around some of the popular digital and linear integrated circuits. The bistable multivibrator, which is
functionally the same as a flip-flop, will not be discussed here. Flip-flops are discussed at length from
Section 10.3 onwards.

10.2.1 Digital IC-Based Monostable Multivibrator

Some of the commonly used digital ICs that can be used as monostable multivibrators include 74121
(single monostable multivibrator), 74221 (dual monostable multivibrator), 74122 (single retriggerable
monostable multivibrator) and 74123 (dual retriggerable monostable multivibrator), all belonging to
the TTL family, and 4098B (dual retriggerable monostable multivibrator) belonging to the CMOS
family. Figure 10.7 shows the use of IC 74121 as a monostable multivibrator along with a trigger
input. The IC provides features for triggering on either LOW-to-HIGH or HIGH-to-LOW edges of
the trigger pulses. Figure 10.7(a) shows one of the possible application circuits for HIGH-to-LOW
edge triggering, and Fig. 10.7(b) shows one of the possible application circuits for LOW-to-HIGH
edge triggering. The output pulse width depends on external R and C. The output pulse width can
be computed from T = 0�7 RC. Recommended ranges of values for R and C are 4–40 K � and 10 pf
to 1000 �F respectively. The IC provides complementary outputs. That is, we have a stable LOW or
HIGH state and the corresponding quasi-stable HIGH or LOW state available on Q and Q outputs.

Figure 10.8 shows the use of 74123, a retriggerable monostable multivibrator. Like 74121, this IC,
too, provides features for triggering on either LOW-to-HIGH or HIGH-to-LOW edges of the trigger
pulses. The output pulse width depends on external R and C. It can be computed from T = 0.28RC×
[1 + (0.7/R)], where R and C are respectively in kiloohms and picofarads and T is in nanoseconds.
This formula is valid for C > 1000 pF. The recommended range of values for R is 5–50 K� . Figures
10.8(a) and (b) give application circuits for HIGH-to-LOW and LOW-to-HIGH triggering respectively.
It may be mentioned here that there can be other triggering circuit options for both LOW-to-HIGH
and HIGH-to-LOW edge triggering of monoshot.

10.2.2 IC Timer-Based Multivibrators

IC timer 555 is one of the most commonly used general-purpose linear integrated circuits. The
simplicity with which monostable and astable multivibrator circuits can be configured around this IC
is one of the main reasons for its wide use. Figure 10.9 shows the internal schematic of timer IC 555.
It comprises two opamp comparators, a flip-flop, a discharge transistor, three identical resistors and
an output stage. The resistors set the reference voltage levels at the noninverting input of the lower
comparator and the inverting input of the upper comparator at (+VCC/3) and (+2VCC/3). The outputs
of the two comparators feed the SET and RESET inputs of the flip-flop and thus decide the logic status

364 Digital Electronics

B Q

GND

A1

A2

74121

Vcc

CEXT

Output

C
+

Q

+Vcc
R

(a)

B Q

GND

A1

A2

74121

Vcc

CEXT

/CEXTREXT

Output

C
+

Q

+Vcc
R

(b)

/CEXTREXT

Figure 10.7 74121 as a monoshot.

of its output and subsequently the final output. The flip-flop complementary outputs feed the output
stage and the base of the discharge transistor. This ensures that when the output is HIGH the discharge
transistor is OFF, and when the output is LOW the discharge transistor is ON. Different terminals
of timer 555 are designated as ground (terminal 1), trigger (terminal 2), output (terminal 3), reset
(terminal 4), control (terminal 5), threshold (terminal 6), discharge (terminal 7) and +VCC (terminal 8).
With this background, we will now describe the astable and monostable circuits configured around
timer 555.

10.2.2.1 Astable Multivibrator Using Timer IC 555

Figure 10.10(a) shows the basic 555 timer based astable multivibrator circuit. Initially, capacitor C is
fully discharged, which forces the output to go to the HIGH state. An open discharge transistor allows
the capacitor C to charge from +VCC through R1 and R2. When the voltage across C exceeds +2VCC/3,
the output goes to the LOW state and the discharge transistor is switched ON at the same time.

Flip-Flops and Related Devices 365

Q

GND

A1

A2

74123

Vcc

CEXT

Output

C
+

Q

+Vcc
R

(a)

REXT

B1

B2
CLR

Q

GND

A1

A2

74123

Vcc

CEXT

Output

C
+

Q

+Vcc
R

(b)

B1

B2
CLR

/CEXT

REXT/CEXT

Figure 10.8 74123 as a retriggerable monoshot.

Capacitor C begins to discharge through R2 and the discharge transistor inside the IC. When the voltage
across C falls below +VCC/3, the output goes back to the HIGH state. The charge and discharge cycles
repeat and the circuit behaves like a free-running multivibrator. Terminal 4 of the IC is the RESET
terminal. usually, it is connected to +VCC. If the voltage at this terminal is driven below 0.4 V, the
output is forced to the LOW state, overriding command pulses at terminal 2 of the IC. The HIGH-state
and LOW-state time periods are governed by the charge (+VCC/3 to +2VCC/3) and discharge (+2VCC/3
to +VCC/3) timings. these are given by the equations

HIGH-state time period THIGH = 0�69�R1 +R2��C (10.7)

LOW-state time period TLOW = 0�69R2�C (10.8)

The relevant waveforms are shown in Fig. 10.10(b). The time period T and frequency f of the output
waveform are respectively given by the equations

366 Digital Electronics

–

+

5K

–

+

5K

5K

VCC(Pin-8)

Reset (Pin-4)

Output (Pin-3)Output
Stage

FF

Discharge
Transistor

Ground (Pin-1)

Control
(Pin-5)

Threshold
(Pin-6)

Trigger
(Pin-2)

Discharge
(Pin-7)

2
3

VCC

1
3

VCC

Vref (int)

Figure 10.9 Internal schematic of timer IC 555.

Time period T = 0�69�R1 +2R2��C (10.9)

Frequency F = 1/ �0�69�R1 +2R2��C� (10.10)

Remember that, when the astable multivibrator is powered, the first-cycle HIGH-state time period is
about 30 % longer, as the capacitor is initially discharged and it charges from 0 (rather than +VCC/3)
to +2VCC/3.

In the case of the astable multivibrator circuit in Fig. 10.10(a), the HIGH-state time period is always
greater than the LOW-state time period. Figures 10.10(c) and (d) show two modified circuits where the
HIGH-state and LOW-state time periods can be chosen independently. For the astable multivibrator
circuits in Fig. 10.10(c) and (d), the two time periods are given by the equations

HIGH-state time period = 0�69R1�C (10.11)

LOW-state time period = 0�69R2�C (10.12)

For R1 = R2 = R

T = 1�38RC and f = 1/1�38RC (10.13)

Flip-Flops and Related Devices 367

R1

tON
tOFF

t

— VCC
1
3

— VCC
2
3

vC

vo

t

(a)

(b)

R2

2,6

7 8 4 3

5 1

0.01

C

+VCC

555

o

vo

Figure 10.10 (a) Astable multivibrator using timer IC 555, (b) astable multivibrator relevant waveforms and
(c, d) modified versions of the astable multivibrator using timer IC 555.

10.2.2.2 Monostable Multivibrator Using Timer IC 555

Figure 10.11(a) shows the basic monostable multivibrator circuit configured around timer 555. A trigger
pulse is applied to terminal 2 of the IC, which should initially be kept at +VCC. A HIGH at terminal
2 forces the output to the LOW state. A HIGH-to-LOW trigger pulse at terminal 2 holds the output in
the HIGH state and simultaneously allows the capacitor to charge from +VCC through R. Remember
that a LOW level of the trigger pulse needs to go at least below +VCC/3. When the capacitor voltage
exceeds +2VCC/3, the output goes back to the LOW state. We will need to apply another trigger pulse to

368 Digital Electronics

R1

(c)

R2

2,6

7 8 4 3

5 1

0.01C

+VCC

555

vo

R1

(d)

R2

2,6

7

84 3

5 1

0.01
C

+VCC

555

vo

D

Figure 10.10 (continued).

terminal 2 to make the output go to the HIGH state again. Every time the timer is appropriately triggered,
the output goes to the HIGH state and stays there for the time it takes the capacitor to charge from
0 to +2VCC/3. This time period, which equals the monoshot output pulse width, is given by the equation

T = 1�1RC (10.14)

Flip-Flops and Related Devices 369

555

+VCC

48
6,7 3

5 1
2

+VCC

Trigger
input

vo

Output

—VCC

VC

2
3

t

t

t

R

C

(a)

(b)

vo

vc

Trigger

0.01

T

Figure 10.11 (a) Monostable multivibrator using timer 555 and (b) monostable multivibrator relevant waveforms.

Figure 10.11(b) shows the relevant waveforms for the circuit of Fig. 10.11(a).
It is often desirable to trigger a monostable multivibrator either on the trailing (HIGH-to-LOW) or

leading (LOW-to-HIGH) edges of the trigger waveform. In order to achieve that, we will need an
external circuit between the trigger waveform input and terminal 2 of timer 555. The external circuit
ensures that terminal 2 of the IC gets the required trigger pulse corresponding to the desired edge of

370 Digital Electronics

(a)

51

6, 7555

4, 8
2

0.01

D

C

VCC

3

R

Trigger
I/p

vo

R1

C1

Trigger
I/P

At
pin-2

VCC

+0.7

VCC

0

0

(b)

Figure 10.12 555 monoshot triggering on trailing edges.

the trigger waveform. Figure 10.12(a) shows the monoshot configuration that can be triggered on the
trailing edges of the trigger waveform. R1–C1 constitutes a differentiator circuit. One of the terminals
of resistor R1 is tied to +VCC, with the result that the amplitudes of differentiated pulses are +VCC to
+2VCC and +VCC to ground, corresponding to the leading and trailing edges of the trigger waveform
respectively. Diode D clamps the positive-going differentiated pulses to about +0.7 V. The net result is
that the trigger terminal of timer 555 gets the required trigger pulses corresponding to HIGH-to-LOW
edges of the trigger waveform. Figure 10.12(b) shows the relevant waveforms.

Figure 10.13(a) shows the monoshot configuration that can be triggered on the leading edges
of the trigger waveform. The R1–C1 combination constitutes the differentiator producing positive
and negative pulses corresponding to LOW-to-HIGH and HIGH-to-LOW transitions of the trigger
waveform. Negative pulses are clamped by the diode, and the positive pulses are applied to the base of
a transistor switch. The collector terminal of the transistor feeds the required trigger pulses to terminal
2 of the IC. Figure 10.13(b) shows the relevant waveforms.

For the circuits shown in Figs 10.12 and 10.13 to function properly, the values of R1 and C1

for the differentiator should be chosen carefully. Firstly, the differentiator time constant should be
much smaller than the HIGH time of the trigger waveform for proper differentiation. Secondly, the
differentiated pulse width should be less than the expected HIGH time of the monoshot output.

Flip-Flops and Related Devices 371

R

6, 7555

84
2

Q

R2

R3

VCC

C1Trigger
I/P

After
differentiator

Trigger
I/P

VCC

0

VCC

C
0.01

5
1

3

DR1

–0.7

VCC

0

At Pin-2

0

(a)

(b)

vo

Figure 10.13 555 monoshot triggering on leading edges.

Example 10.1

The pulsed waveform of Fig. 10.14(b) is applied to the RESET terminal of the astable multivibrator
circuit of Fig. 10.14(a). Draw the output waveform.

Solution
The circuit shown in Fig. 10.14(a) is an astable multivibrator with a 500 Hz symmetrical waveform
applied to its RESET terminal. The RESET terminal is alternately HIGH and LOW for 1.0 ms. When
the RESET input is LOW, the output is forced to the LOW state. When the RESET input is HIGH, an
astable waveform appears at the output. The HIGH and LOW time periods of the astable multivibrator
are determined as follows:

372 Digital Electronics

0.01

15

5552,6

8

3
7

4
0.01 Fµ

14.5K

14.5K

1ms 1ms

(a)

(b)

+Vcc

vo

Figure 10.14 Example 10.1.

Figure 10.15 Solution to example 10.1.

HIGH time = 0�69×14�5×103 ×0�01×10−6 = 100 �s

LOW time = 0�69×14�5×103 ×0�01×10−6 = 100 �s

The astable output is thus a 5 kHz symmetrical waveform. Every time the RESET terminal goes to
HIGH for 1.0 ms, five cycles of 5 kHz waveform appear at the output. Figure 10.15 shows the output
waveform appearing at terminal 3 of the timer IC.

Flip-Flops and Related Devices 373

4,8

6,7
3

2

15

VCC

0.01

Trigger Input 555

10K

Output

0.01

Figure 10.16 Example 10.2.

Example 10.2

Refer to the monostable multivibrator circuit in Fig. 10.16. The trigger terminal (pin 2 of the IC) is
driven by a symmetrical pulsed waveform of 10 kHz. Determine the frequency and duty cycle of the
output waveform.

Solution
• The frequency of the trigger waveform = 10 kHz.
• The time period between two successive leading or trailing edges = 100 �s.
• The expected pulse width of the monoshot output = 1.1RC = 1.1 × 104 ×10−8 = 110 �s.
• The trigger waveform is a symmetrical one; it has HIGH and LOW time periods of 50 	s each.

Since the LOW-state time period of the trigger waveform is less than the expected output pulse
width, it can successfully trigger the monoshot on its trailing edges.

• Since the time period between two successive trailing edges is 100 �s and the expected output pulse
width is 110 �s, only alternate trailing edges of the trigger waveform will trigger the monoshot.

• The frequency of the output waveform = 10/2 = 5 kHz.
• The time period of the output waveform = 1/(5 ×103� = 200 �s.
• Therefore, the duty cycle of the output waveform = 110/200 = 0.55.

10.3 R-S Flip-Flop
A flip-flop, as stated earlier, is a bistable circuit. Both of its output states are stable. The circuit remains
in a particular output state indefinitely until something is done to change that output status. Referring to
the bistable multivibrator circuit discussed earlier, these two states were those of the output transistor
in saturation (representing a LOW output) and in cut-off (representing a HIGH output). If the LOW
and HIGH outputs are respectively regarded as ‘0’ and ‘1’, then the output can either be a ‘0’ or a ‘1’.
Since either a ‘0’ or a ‘1’ can be held indefinitely until the circuit is appropriately triggered to go to
the other state, the circuit is said to have memory. It is capable of storing one binary digit or one bit
of digital information. Also, if we recall the functioning of the bistable multivibrator circuit, we find

374 Digital Electronics

that, when one of the transistors was in saturation, the other was in cut-off. This implies that, if we had
taken outputs from the collectors of both transistors, then the two outputs would be complementary.
In the flip-flops of various types that are available in IC form, we will see that all these devices offer
complementary outputs usually designated as Q and Q�

The R-S flip-flop is the most basic of all flip-flops. The letters ‘R’ and ‘S’ here stand for RESET
and SET. When the flip-flop is SET, its Q output goes to a ‘1’ state, and when it is RESET it goes to
a ‘0’ state. The Q output is the complement of the Q output at all times.

10.3.1 R-S Flip-Flop with Active LOW Inputs

Figure 10.17(a) shows a NAND gate implementation of an R-S flip-flop with active LOW inputs. The
two NAND gates are cross-coupled. That is, the output of NAND 1 is fed back to one of the inputs
of NAND 2, and the output of NAND 2 is fed back to one of the inputs of NAND 1. The remaining
inputs of NAND 1 and NAND 2 are the S and R inputs. The outputs of NAND 1 and NAND 2 are
respectively Q and Q outputs.

The fact that this configuration follows the function table of Fig. 10.17(c) can be explained. We will
look at different entries of the function table, one at a time.

Let us take the case of R = S = 1 (the first entry in the function table). We will prove that, for
R = S = 1, the Q output remains in its existing state. In the truth table, Qn represents the existing state
and Qn+1 represents the state of the flip-flop after it has been triggered by an appropriate pulse at the
R or S input. Let us assume that Q = 0 initially. This ‘0’ state fed back to one of the inputs of gate 2
ensures that Q = 1. The ‘1’ state of Q fed back to one of the inputs of gate 1 along with S = 1 ensures
that Q = 0. Thus, R = S = 1 holds the existing stage. Now, if Q was initially in the ‘1’ state and not
the ‘0’ state, this ‘1’ fed back to one of the inputs of gate 2 along with R = 1 forces Q to be in the ‘0’
state. The ‘0’ state, when fed back to one of the inputs of gate 1, ensures that Q remains in its existing
state of logic ‘1’. Thus, whatever the state of Q, R = S = 1 holds the existing state.

Let us now look at the second entry of the function table where S = 0 and R = 1. We can see that
such an input combination forces the Q output to the ‘1’ state. On similar lines, the input combination
S = 1 and R = 0 (third entry of the truth table) forces the Q output to the ‘0’ state. It would be
interesting to analyse what happens when S = R = 0. This implies that both Q and Q outputs should
go to the ‘1’ state, as one of the inputs of a NAND gate being a logic ‘0’ should force its output to the
logic ‘1’ state irrespective of the status of the other input. This is an undesired state as Q and Q outputs
are to be the complement of each other. The input condition (i.e. R = S = 0) that causes such a situation
is therefore considered to be an invalid condition and is forbidden. Figure 10.17(b) shows the logic
symbol of such a flip-flop. The R and S inputs here have been shown as active LOW inputs, which is
obvious as this flip-flop of Fig. 10.17(a) is SET (that is, Q = 1) when S = 0 and RESET (that is, Q = 0)
when R = 0. Thus, R and S are active when LOW. The term CLEAR input is also used sometimes in
place of RESET. The operation of the R-S flip-flop of Fig. 10.17(a) can be summarized as follows:

1. SET = RESET = 1 is the normal resting condition of the flip-flop. It has no effect on the output state of
the flip-flop. Both Q and Q outputs remain in the logic state they were in prior to this input condition.

2. SET = 0 and RESET = 1 sets the flip-flop. Q and Q respectively go to the ‘1’ and ‘0’ state.
3. SET = 1 and RESET = 0 resets or clears the flip-flop. Q and Q respectively go to the ‘0’ and ‘1’ state.
4. SET = RESET = 0 is forbidden as such a condition tries to set (that is, Q = 1) and reset (that

is, Q = 1) the flip-flop at the same time. To be more precise, SET and RESET inputs in the R-S
flip-flop cannot be active at the same time.

The R-S flip-flop of Fig. 10.17(a) is also referred to as an R-S latch. This is because any combination
at the inputs immediately manifests itself at the output as per the truth table.

Flip-Flops and Related Devices 375

S
Q

Q
—

R
2

1

S

R

Q

Q
—

Operation
Mode

No change

SET

RESET

Forbidden

S

1

0

1

0

R

1

1

0

0

Qn+1
Qn

1

0

—

(a)

(b)

(c)

RS
FF

Figure 10.17 R-S flip-flop with active LOW inputs.

10.3.2 R-S Flip-Flop with Active HIGH Inputs

Figure 10.18(a) shows another NAND gate implementation of the R-S flip-flop. Figures 10.18(b) and
(c) respectively show its circuit symbol and function table. Such a circuit would have active HIGH
inputs. The input combination R = S = 1 would be forbidden as SET and RESET inputs in an R-S
flip-flop cannot be active at the same time.

376 Digital Electronics

S

Q

QR

S

R

Q

Operation
Mode

No change

SET

RESET

Forbidden

S

0

1

0

1

R

0

0

1

1

Qn+1

Q

1

0

—

n

(a)

(b)

(c)

RS
FF

Q

Figure 10.18 R-S flip-flop with active HIGH inputs.

The R-S flip-flops (or latches) of Figs 10.17(a) and 10.18 (a) may also be implemented with NOR
gates. The NOR gate counterparts of Fig. 10.17(a) and Fig. 10.18(a) are respectively shown in Figs
10.19(a) and (b).

So far we have discussed the operation of an R-S flip-flop with the help of its logic diagram and the
function table on lines similar to the case of combinational circuits. We do, however, appreciate that a
sequential circuit would be better explained if we expressed its output (immediately after it was clocked)
in terms of its present output and its inputs. The function tables of Figs 10.17(c) and 10.18(c) may
be redrawn as shown in Figs 10.20(a) and (b) respectively. This new form of representation is known
as the characteristic table. Having done this, we could even write simplified Boolean expressions,

Flip-Flops and Related Devices 377

S
Q

R

(b)

S
Q

R

(a)

Q

Q

Figure 10.19 NOR implementation of an R-S flip-flop.

called characteristic equations, using any of the minimization techniques, such as Karnaugh mapping.
The K-maps for the characteristic tables of Figs 10.20(a) and (b) are given in Figs 10.20(c) and (d)
respectively. Characteristic equations for R-S flip-flops with active LOW and active HIGH inputs are
given by the equations

Qn+1 = S +R�Qn and S +R = 1 (10.15)

Qn+1 = S +R�Qn and S�R = 0 (10.16)

S+R = 1 indicates that R = S = 0 is a prohibited entry. Similarly, S�R = 0 only indicates that R = S = 1
is a prohibited entry.

10.3.3 Clocked R-S Flip-Flop

In the case of a clocked R-S flip-flop, or for that matter any clocked flip-flop, the outputs change
states as per the inputs only on the occurrence of a clock pulse. The clocked flip-flop could be a
level-triggered one or an edge-triggered one. The two types are discussed in the next section. For the

378 Digital Electronics

S

0

0

1

1

0

0

1

1

Qn+1
0

0

1

Indeter

1

0

1

Indeter

Qn

0

0

0

0

1

1

1

1

R

0

1

0

1

0

1

0

1

S

0

0

1

1

0

0

1

1

Qn+1
Indeter

1

0

0

Indeter

1

0

1

Qn

0

0

0

0

1

1

1

1

R

0

1

0

1

0

1

0

1

X

X

1

1 1

00 01 11 10

SR
Qn

0

1

X

X

1

11

00 01 11 10

SR
Qn

0

1

(c)

(d)

(b)

(a)

Figure 10.20 (a) Characteristic table of an R-S flip-flop with active LOW inputs, (b) the characteristic table of
an R-S flip-flop with active HIGH inputs, (c) the K-map solution of an R-S flip-flop with active LOW inputs and
(d) the K-map solution of an R-S flip-flop with active HIGH inputs.

Flip-Flops and Related Devices 379

time being, let us first see how the flip-flop of the previous section can be transformed into a clocked
flip-flop. Figure 10.21(a) shows the logic implementation of a clocked flip-flop that has active HIGH
inputs. The function table for the same is shown in Fig. 10.21(b) and is self-explanatory.

The basic flip-flop is the same as that shown in Fig. 10.17(a). The two NAND gates at the input
have been used to couple the R and S inputs to the flip-flop inputs under the control of the clock
signal. When the clock signal is HIGH, the two NAND gates are enabled and the S and R inputs are
passed on to flip-flop inputs with their status complemented. The outputs can now change states as per
the status of R and S at the flip-flop inputs. For instance, when S = 1 and R = 0 it will be passed on as
0 and 1 respectively when the clock is HIGH. When the clock is LOW, the two NAND gates produce
a ‘1’ at their outputs, irrespective of the S and R status. This produces a logic ‘1’ at both inputs of the
flip-flop, with the result that there is no effect on the output states. Figure 10.22(a) shows the clocked
R-S flip-flop with active LOW R and S inputs. The logic implementation here is a modification of
the basic R-S flip-flop in Fig. 10.18(a). The truth table of this flip-flop, as given in Fig. 10.22(b), is
self-explanatory.

S Q

R 2

1

(a)

Clk

R

0

0

1

1

0

0

1

1

Qn+1
Qn
Qn
Qn

Qn

Qn

0

1

Invalid

S

0

0

0

0

1

1

1

1

Clk

0

1

0

1

0

1

0

1

(b)

Q

Figure 10.21 Clocked R-S flip-flop with active HIGH inputs.

380 Digital Electronics

S Q

R

FFClk

(c)

Q

Figure 10.21 (continued).

(a)

R

0

0

1

1

0

0

1

1

Qn+1
Qn

Qn

Qn

Qn
Qn

Invalid

1

0

S

0

0

0

0

1

1

1

1

Clk

0

1

0

1

0

1

0

1

(b)

S Q

Q
–

R 2

1

Clk

Figure 10.22 Clocked R-S flip-flop with active LOW inputs.

Flip-Flops and Related Devices 381

S Q

R Q
–

FFClk

(c)

Figure 10.22 (continued).

10.4 Level-Triggered and Edge-Triggered Flip-Flops
In a level-triggered flip-flop, the output responds to the data present at the inputs during the time the
clock pulse level is HIGH (or LOW). That is, any changes at the input during the time the clock is active
(HIGH or LOW) are reflected at the output as per its function table. The clocked R-S flip-flop described
in the preceding paragraphs is a level-triggered flip-flop that is active when the clock is HIGH.

In an edge-triggered flip-flop, the output responds to the data at the inputs only on LOW-to-HIGH
or HIGH-to-LOW transition of the clock signal. The flip-flop in the two cases is referred to as positive
edge triggered and negative edge triggered respectively. Any changes in the input during the time
the clock pulse is HIGH (or LOW) do not have any effect on the output. In the case of an edge-
triggered flip-flop, an edge detector circuit transforms the clock input into a very narrow pulse that is
a few nanoseconds wide. This narrow pulse coincides with either LOW-to-HIGH or HIGH-to-LOW
transition of the clock input, depending upon whether it is a positive edge-triggered flip-flop or a
negative edge-triggered flip-flop. This pulse is so narrow that the operation of the flip–flop can be
considered to have occurred on the edge itself.

Figure 10.23 shows the clocked R-S flip-flop of Fig. 10.21 with the edge detector block incorporated
in the clock circuit. Figures 10.24 (a) and (b) respectively show typical edge detector circuits for positive

S Q

Q
—

R

Clk Edge
Detector

Figure 10.23 Edge-triggered R-S flip-flop.

382 Digital Electronics

and negative edge triggering. The width of the narrow pulse generated by this edge detector circuit is
equal to the propagation delay of the inverter. Figure 10.25 shows the circuit symbol for the flip-flop of
Fig. 10.23 for the positive edge-triggered mode [Fig. 10.25(a)] and the negative edge-triggered mode
[Fig. 10.25(b)].

10.5 J -K Flip-Flop
A J -K flip-flop behaves in the same fashion as an R-S flip-flop except for one of the entries in the
function table. In the case of an R-S flip-flop, the input combination S = R = 1 (in the case of a
flip-flop with active HIGH inputs) and the input combination S = R = 0 (in the case of a flip-flop
with active LOW inputs) are prohibited. In the case of a J -K flip-flop with active HIGH inputs, the
output of the flip-flop toggles, that is, it goes to the other state, for J = K = 1 . The output toggles for
J = K = 0 in the case of the flip-flop having active LOW inputs. Thus, a J -K flip-flop overcomes the
problem of a forbidden input combination of the R-S flip-flop. Figures 10.26(a) and (b) respectively
show the circuit symbol of level-triggered J -K flip-flops with active HIGH and active LOW inputs,
along with their function tables. Figure 10.27 shows the realization of a J -K flip-flop with an R-S
flip-flop.

The characteristic tables for a J -K flip-flop with active HIGH J and K inputs and a J -K flip-flop
with active LOW J and K inputs are respectively shown in Figs 10.28(a) and (b)� The corresponding
Karnaugh maps are shown in Fig. 10.28(c) for the characteristics table of Fig. 10.28(a) and in Fig.
10.28(d) for the characteristic table of Fig. 10.28(b). The characteristic equations for the Karnaugh
maps of Figs 10.28(c) and (d) are respectively

Qn+1 = J�Qn +K�Qn (10.17)

Qn+1 = J�Qn +K�Qn (10.18)

10.5.1 J -K Flip-Flop with PRESET and CLEAR Inputs

It is often necessary to clear a flip-flop to a logic ‘0’ state (Qn = 0) or preset it to a logic ‘1’ state
(Qn = 1). An example of how this is realized is shown in Fig. 10.29(a). The flip-flop is cleared (that is,
Qn = 0) whenever the CLEAR input is ‘0’ and the PRESET input is ‘1’. The flip-flop is preset to the
logic ‘1’ state whenever the PRESET input is ‘0’ and the CLEAR input is ‘1’. Here, the CLEAR and
PRESET inputs are active when LOW. Figure 10.29(b) shows the circuit symbol of this presettable,
clearable, clocked J -K flip-flop. Figure 10.29(c) shows the function table of such a flip-flop. It is
evident from the function table that, whenever the PRESET input is active, the output goes to the ‘1’
state irrespective of the status of the clock, J and K inputs. Similarly, when the flip-flop is cleared, that
is, the CLEAR input is active, the output goes to the ‘0’ state irrespective of the status of the clock, J
and K inputs. In a flip-flop of this type, both PRESET and CLEAR inputs should not be made active
at the same time.

10.5.2 Master–Slave Flip-Flops

Whenever the width of the pulse clocking the flip-flop is greater than the propagation delay of the
flip-flop, the change in state at the output is not reliable. In the case of edge-triggered flip-flops, this
pulse width would be the trigger pulse width generated by the edge detector portion of the flip-flop

Flip-Flops and Related Devices 383

Clk
—–

Clk

Clk
—–

Clk

Clk
—–

Clk

Clk
—–

Clk

(a)

(b)

Figure 10.24 (a) Positive edge-triggered edge detector circuits and (b) negative edge-triggered edge detector
circuits.

384 Digital Electronics

FF

Q
—

QS

R

Clk

FF

Q
—

QS

R

Clk

(a)

(b)

Figure 10.25 (a) Circuit symbol of a positive edge-triggered R-S flip-flop and (b) the circuit symbol of a negative
edge-triggered R-S flip-flop.

and not the pulse width of the input clock signal. This phenomenon is referred to as the race
problem. As the propagation delays are normally very small, the likelihood of the occurrence of
a race condition is reasonably high. One way to get over this problem is to use a master–slave
configuration. Figure 10.30(a) shows a master–slave flip-flop constructed with two J -K flip-flops.
The first flip-flop is called the master flip-flop and the second is called the slave. The clock to
the slave flip-flop is the complement of the clock to the master flip-flop. When the clock pulse
is present, the master flip-flop is enabled while the slave flip-flop is disabled. As a result, the
master flip-flop can change state while the slave flip-flop cannot. When the clock goes LOW, the
master flip-flop gets disabled while the slave flip-flop is enabled. Therefore, the slave J -K flip-flop
changes state as per the logic states at its J and K inputs. The contents of the master flip-flop
are therefore transferred to the slave flip-flop, and the master flip-flop, being disabled, can acquire
new inputs without affecting the output. As would be clear from the description above, a master–
slave flip-flop is a pulse-triggered flip-flop and not an edge-triggered one. Figure 10.30(b) shows
the truth table of a master–slave J -K flip-flop with active LOW PRESET and CLEAR inputs and
active HIGH J and K inputs. The master–slave configuration has become obsolete. The newer IC
technologies such as 74LS, 74AS, 74ALS, 74HC and 74HCT do not have master–slave flip-flops in their
series.

Flip-Flops and Related Devices 385

Q

K

J

Clk
FF

(a)

Operation Mode

SET

RESET

NO CHANGE

TOGGLE

J

1

0

0

1

K

0

1

0

1

Clk

1

1

1

1

1

0

Qn

Qn

Q

K

J

Clk FF

(b)

Operation Mode

SET

RESET

NO CHANGE

TOGGLE

J

0

1

1

0

K

1

0

1

0

Clk

1

1

1

1

1

0

Qn

Qn
—

—
Q

Q

Qn+1

Qn+1

Figure 10.26 (a) J -K flip-flop active HIGH inputs and (b) J -K flip-flop active LOW inputs.

QS

Q
–

R
K

J

FF

Figure 10.27 Realization of a J -K flip-flop using an R-S flip-flop.

Example 10.3

Draw the circuit symbol of the flip-flop represented by the function table of Fig. 10.31(a).

Solution
The first three entries of the function table indicate that the J -K flip-flop has active HIGH PRESET
and CLEAR inputs. Referring to the fourth and fifth entries of the function table, it has active LOW
J and K inputs. The seventh row of the function table confirms this. The output responds to positive
(LOW-to-HIGH) edges of the clock input. Thus, the flip-flop represented by the given function table
is a presettable, clearable, positive edge-triggered flip-flop with active HIGH PRESET and CLEAR

386 Digital Electronics

J

0

0

1

1

0

0

1

1

Qn+1
0

0

1

1

1

0

1

0

Qn
0

0

0

0

1

1

1

1

K

0

1

0

1

0

1

0

1

J

0

0

1

1

0

0

1

1

Qn+1
1

1

0

0

0

1

0

1

Qn
0

0

0

0

1

1

1

1

K

0

1

0

1

0

1

0

1

1

1

1

00 01 11 10Qn

0

1

00 01 11 10
JK

Qn

0

1

(c)

(d)

(a)

(b)

JK

1

1 1

1 1

Figure 10.28 (a) Characteristic table of a J -K flip-flop with active HIGH inputs, (b) the characteristic table of
a J -K flip-flop with active LOW inputs, (c) the K-map solution of a J -K flip-flop with active HIGH inputs and
(d) the K-map solution of a J -K flip-flop with active LOW inputs.

Flip-Flops and Related Devices 387

(a)

J
Q

Q
K

Clk

CLEAR

PRESET

Q

K

J

Clk FF

Pr

Cl

(b)

PR

0

1

0

1

1

1

1

1

CL

1

0

0

1

1

1

1

1

CLK

X

X

X

1

1

1

1

0

J

X

X

X

0

1

0

1

X

K

X

X

X

0

0

1

1

X

Qn+1

1

0

Qn

1

0

Qn

Qn+1

0

1

0

1

Qn

Qn

Toggle

(c)

Q
—

Figure 10.29 J -K flip-flop with PRESET and CLEAR inputs.

388 Digital Electronics

Q

Q
–K

J

Clk Master
FF

Q

Q
–K

J

Clk Slave
FF

(a)

PR

0

1

0

1

1

1

1

CLR

1

0

0

1

1

1

1

CLK

X

X

X

J

X

X

X

0

1

0

1

K

X

X

X

0

0

1

1

Qn+1

1

0

Qn

1

0

Qn+1

0

1

0

1

Qn

Toggle

Unstable

(b)

Figure 10.30 Master–slave flip-flop.

PR

1

0

1

0

0

0

0

CLR

0

1

1

0

0

0

0

CLK

X

X

X

J

X

X

X

0

1

1

0

K

X

X

X

1

0

1

0

Qn+1

1

0

1

0

Qn

Qn+1

0

1

0

1

Qn

Toggle

Unstable

Q

QK

J

Clk FF

Pr

Cl

(a) (b)

Figure 10.31 Example 10.3.

Flip-Flops and Related Devices 389

and active LOW J and K inputs. Figure 10.31(b) shows the circuit symbol of the flip-flop represented
by this truth table.

Example 10.4

The 100 kHz square waveform of Fig. 10.32(a) is applied to the clock input of the flip-flops shown in
Figs. 10.32(b) and (c). If the Q output is initially ‘0’, draw the Q output waveform in the two cases.
Also, determine the frequency of the Q output in the two cases.

a b c d e f g h i j k l m n

(a)

Q

Q
–

K

J

Clk FF

(b)

Q

Q
–

K

J

Clk FF

(c)

Figure 10.32 Example 10.4.

390 Digital Electronics

b d f h lj

a c e g ki

(a)

(b)

n

m

Figure 10.33 Solution to example 10.4.

Solution
Refer to the flip-flop of Fig. 10.32(b). Q is initially ‘0’. This makes the J and K inputs be initially ‘1’
and ‘0’ respectively. With the first trailing edge of the clock input, Q goes to the ‘1’ state. Thus, J
and K acquire a logic status of ‘0’ and ‘1’ respectively. With the next trailing edge of the clock input,
Q goes to logic ‘0’. This process continues, and Q alternately becomes ‘1’ and ‘0’. The Q output
waveform for this case is shown in Fig. 10.33(a). In the case of the flip-flop of Fig. 10.32(c), J and K
are initially ‘0’ and ‘1’ respectively. Thus, J is active. With the first leading edge of the clock input,
Q and therefore J go to the logic ‘1’ state. The second leading edge forces Q to go to the logic ‘0’
state as now it is the K input that is in the logic ‘0’ state and active. This circuit also behaves in the
same way as the flip-flop of Fig. 10.32(b). The output goes alternately to the logic ‘0’ and ‘1’ state.
However, the transitions occur on the leading edge of the clock input. Figure 10.33(b) shows the Q
output waveform for this case. The frequency of the Q output waveform in the two cases is equal to
half the frequency of the clock input, for obvious reasons, and is therefore 50 kHz.

10.6 Toggle Flip-Flop (T Flip-Flop)
The output of a toggle flip-flop, also called a T flip-flop, changes state every time it is triggered at
its T input, called the toggle input. That is, the output becomes ‘1’ if it was ‘0’ and ‘0’ if it was ‘1’.

Flip-Flops and Related Devices 391

Figures 10.34(a) and (b) respectively show the circuit symbols of positive edge-triggered and negative
edge-triggered T flip-flops, along with their function tables.

If we consider the T input as active when HIGH, the characteristic table of such a flip-flop is shown
in Fig. 10.34(c). If the T input were active when LOW, then the characteristic table would be as shown
in Fig. 10.34(d). The Karnaugh maps for the characteristic tables of Figs 10.34(c) and (d) are shown
in Figs 10.34(e) and (f) respectively. The characteristic equations as written from the Karnaugh maps
are as follows:

Qn+1 = T�Qn +T�Qn (10.19)

Qn+1 = T�Qn +T�Qn (10.20)

It is obvious from the operational principle of the T flip-flop that the frequency of the signal at the
Q output is half the frequency of the signal applied at the T input. A cascaded arrangement of nT
flip-flops, where the output of one flip-flop is connected to the T input of the following flip-flop, can
be used to divide the input signal frequency by a factor of 2n. Figure 10.35 shows a divide-by-16
circuit built around a cascaded arrangement of four T flip-flops.

10.6.1 J-K Flip-Flop as a Toggle Flip-Flop

If we recall the function table of a J -K flip-flop, we will see that, when both J and K inputs of the
flip-flop are tied to their active level (‘1’ level if J and K are active when HIGH, and ‘0’ level when J
and K are active when LOW), the flip-flop behaves like a toggle flip-flop, with its clock input serving
as the T input. In fact, the J -K flip-flop can be used to construct any other flip-flop. That is why it is
also sometimes referred to as a universal flip-flop. Figure 10.36 shows the use of a J -K flip-flop as a
T flip-flop.

Example 10.5

Refer to the cascaded arrangement of two T flip-flops in Fig. 10.37(a). Draw the Q output waveform
for the given input signal. If the time period of the input signal is 10 ms, find the frequency of the
output signal? If, in the flip-flop arrangement of Fig. 10.37(a), FF-2 were positive edge triggered,
draw the Q output waveform.

Solution
The Q output waveform is shown in Fig. 10.37(b) along with the Q output of FF-1. The output of the
first T flip-flop changes state for every negative-going edge of the input clock waveform. Its frequency
is therefore half the input signal frequency. The output of the first flip-flop acts as the clock input
for the second T flip-flop in the cascade arrangement. The second flip-flop, too, toggles for every
negative-going edge of the waveform appearing at its input. The final output thus has a frequency that
is one-fourth of the input signal frequency:

• Now the time period of the input signal = 10 ms.
• Therefore, the frequency = 100 kHz.
• The frequency of the output signal = 25 kHz.

392 Digital Electronics

Q

T FF

T Q

0

1

n Q

1

0

n+1

(a)

Q

T FF

T Q

0

1

n Q

1

0

n+1

(b)

T

0

1

0

1

Q

0

0

1

1

n Q

0

1

1

0

n+1

(c)

T

0

1

0

1

Q

0

0

1

1

n Q

1

0

0

1

n+1

(d)

Figure 10.34 (a) Positive edge-triggered toggle flip-flop, (b) a negative edge-triggered toggle flip-flop, (c, d)
characteristic tables of level-triggered toggle flip-flops and (e, f) Karnaugh maps for characteristic tables (c, d).

Flip-Flops and Related Devices 393

1

1

10Qn

T

0

1

(e)

1

1

10Qn

T

0

1

(f)

Figure 10.34 (continued).

FFT

Q

FFT

Q

FFT

Q

FFT

Q

Figure 10.35 Cascade arrangement of T flip-flops.

Q

Clk FF

J

K

T

Q

'1'

Figure 10.36 J -K flip-flop as a T flip-flop.

394 Digital Electronics

Q

T FF-1Input

(a)

Q

T FF-2

Output

Input

(b)

Output of
First Flip Flop

Final Output

Figure 10.37 Example 10.5.

When the second flip-flop (FF-2) is a positive edge-triggered one, it will respond to the LOW-to-HIGH
edges of the waveform appearing at its T input, which is the waveform appearing at the Q output of
FF-1. The relevant waveforms in this case are shown in Fig. 10.38.

10.7 D Flip-Flop
A D flip-flop, also called a delay flip-flop, can be used to provide temporary storage of one bit of
information. Figure 10.39(a) shows the circuit symbol and function table of a negative edge-triggered
D flip-flop. When the clock is active, the data bit (0 or 1) present at the D input is transferred to
the output. In the D flip-flop of Fig. 10.39, the data transfer from D input to Q output occurs on
the negative-going (HIGH-to-LOW) transition of the clock input. The D input can acquire new status

Flip-Flops and Related Devices 395

Input

Output

Figure 10.38 Example 10.5.

when the clock is inactive, which is the time period between successive HIGH-to-LOW transitions.
The D flip-flop can provide a maximum delay of one clock period.

The characteristic table and the corresponding Karnaugh map for the D flip-flop of Fig. 10.39(a)
are shown in Figs 10.39(c) and (d) respectively. The characteristic equation is as follows:

Qn+1 = D (10.21)

10.7.1 J -K Flip-Flop as D Flip-Flop

Figure 10.40 shows how a J -K flip-flop can be used as a D flip-flop. When the D input is a logic
‘1’, the J and K inputs are a logic ‘1’ and ‘0’ respectively. According to the function table of the
J -K flip-flop, under these input conditions, the Q output will go to the logic ‘1’ state when clocked.
Also, when the D input is a logic ‘0’, the J and K inputs are a logic ‘0’ and ‘1’ respectively. Again,
according to the function table of the J -K flip-flop, under these input conditions, the Q output will go
to the logic ‘0’ state when clocked. Thus, in both cases, the D input is passed on to the output when
the flip-flop is clocked.

10.7.2 D Latch

In a D latch, the output Q follows the D input as long as the clock input (also called the ENABLE
input) is HIGH or LOW, depending upon the clock level to which it responds. When the ENABLE
input goes to the inactive level, the output holds on to the logic state it was in just prior to the
ENABLE input becoming inactive during the entire time period the ENABLE input is inactive.

396 Digital Electronics

D

0

1

0

1

Q

0

0

1

1

n Q

0

1

0

1

n+1

(c)

1

1

10Qn

D

0

1

Q = Dn+1

(d)

Q

FF

D

0

1

Clk

0

1

(b)

D

(a)

Clk

Q

Figure 10.39 D flip-flop.

Flip-Flops and Related Devices 397

Q

Clk FF

J

K

D

Figure 10.40 J -K flip-flop as a D flip-flop.

Q

Enable FF

D
Enable

D-Input

Q-Output

(a)

Q

Clk
FF

D
CLK

D-Input

Q-Output

(b)

Figure 10.41 Comparison between a D-type latch and a D flip-flop.

A D flip-flop should not be confused with a D latch. In a D flip-flop, the data on the D input are
transferred to the Q output on the positive- or negative-going transition of the clock signal, depending
upon the flip-flop, and this logic state is held at the output until we get the next effective clock
transition. The difference between the two is further illustrated in Figs 10.41(a) and (b) depicting the
functioning of a D latch and a D flip-flop respectively.

398 Digital Electronics

Enable

D

To-other
D-Latches

Q
–

Q

Figure 10.42 Example 10.6.

Example 10.6

Figure 10.42 shows the internal logic circuit diagram of one of the four D latches of a four-bit D
latch in IC 7475. (a) Give an argument to prove that the Q output will track the D input only when
the ENABLE input is HIGH. (b) Also, prove that the Q output holds the value it had just before the
ENABLE input went LOW during the time the ENABLE input is LOW.

Solution
(a) When the ENABLE input is HIGH, the upper AND gate is enabled while the lower AND gate is

disabled. The outputs of the upper and lower AND gates are D and logic ‘0’ respectively. They
constitute inputs of the NOR gate whose output is D . The Q output is therefore D.

(b) When the ENABLE input goes LOW, the upper AND gate is disabled (with its output going to
logic ‘0’) and the lower AND gate is enabled (with its output becoming the same as the Q output
owing to the feedback). The NOR gate output in this case is Q , which means that the Q output
holds its state as long as the ENABLE input is LOW.

10.8 Synchronous and Asynchronous Inputs
Most flip-flops have both synchronous and asynchronous inputs. Synchronous inputs are those whose
effect on the flip-flop output is synchronized with the clock input. R, S, J , K and D inputs are all
synchronous inputs. Asynchronous inputs are those that operate independently of the synchronous
inputs and the input clock signal. These are in fact override inputs as their status overrides the status
of all synchronous inputs and also the clock input. They force the flip-flop output to go to a predefined
state irrespective of the logic status of the synchronous inputs. PRESET and CLEAR inputs are
examples of asynchronous inputs. When active, the PRESET and CLEAR inputs place the flip-flop Q
output in the ‘1’ and ‘0’ state respectively. Usually, these are active LOW inputs. When it is desired
that the flip-flop functions as per the status of its synchronous inputs, the asynchronous inputs are kept
in their inactive state. Also, both asynchronous inputs, if available on a given flip-flop, are not made
active simultaneously.

Flip-Flops and Related Devices 399

10.9 Flip-Flop Timing Parameters
Certain timing parameters would be listed in the specification sheet of a flip-flop. Some of these
parameters, as we will see in the paragraphs to follow, are specific to the logic family to which the
flip-flop belongs. There are some parameters that have different values for different flip-flops belonging
to the same broad logic family. It is therefore important that one considers these timing parameters
before using a certain flip-flop in a given application. Some of the important ones are set-up and hold
times, propagation delay, clock pulse HIGH and LOW times, asynchronous input active pulse width,
clock transition time and maximum clock frequency.

10.9.1 Set-Up and Hold Times

The set-up time is the minimum time period for which the synchronous inputs (for example, R, S, J ,
K and D� and asynchronous inputs (for example, PRESET and CLEAR) must be stable prior to the
active clock transition for the flip-flop output to respond reliably at the clock transition. It is usually
denoted by ts (min) and is usually defined separately for synchronous and asynchronous inputs. As
an example, if in a J -K flip-flop the J and K inputs were to go to ‘1’ and ‘0’ respectively, and
if the flip-flop were negative edge triggered, the set-up time would be as shown in Fig. 10.43(a).
The set-up time in the case of 74ALS109A, which is a dual J -K positive edge-triggered flip-flop
belonging to the advanced low-power Schottky TTL logic family, is 15 ns. Also, the asynchronous
inputs, such as PRESET and CLEAR, if there, should be inactive prior to the clock transition for a
certain minimum time period if the outputs have to respond as per synchronous inputs. In the case
of 74ALS109A, the asynchronous input set-up time is 10 ns. The asynchronous input set-up time for
active low PRESET and CLEAR inputs is shown in Fig. 10.43(b), assuming a positive edge-triggered
flip-flop.

The hold time tH (min) is the minimum time period for which the synchronous inputs (R, S, J , K, D�
must remain stable in the desired logic state after the active clock transition for the flip-flop to respond
reliably. The same is depicted in Fig. 10.43(a) if the desired logic status for J and K inputs is ‘1’ and
‘0’ respectively and the flip-flop is negative edge triggered. The hold time for flip-flop 74ALS109A
is specified to be zero. To sum up, for a flip-flop to respond properly and reliably at the active clock
transition, the synchronous inputs must be stable in their intended logic states and the asynchronous
inputs must be stable in their inactive states for at least a time period equal to the specified minimum
set-up times prior to the clock transition, and the synchronous inputs must be stable for a time period
equal to at least the specified minimum hold time after the clock transition.

10.9.2 Propagation Delay

There is always a time delay, known as the propagation delay, from the time instant the signal is
applied to the time the output makes the intended change. The flip-flop data sheet usually specifies
propagation delays for both HIGH-to-LOW (tpHL� and for LOW-to-HIGH (tpLH� output transitions.
The propagation delay is measured between 50 % points on input and output waveforms and is usually
specified for all types of input including synchronous and asynchronous inputs. The propagation delays
for LOW-to-HIGH and HIGH-to-LOW output transitions for a positive edge-triggered flip-flop are
shown in Fig. 10.44. For flip-flop 74ALS109A, tpHL and tpLH for clock input to output are respectively
18 and 16 ns. The same for the asynchronous input to output for this flip-flop are 15 and 13 ns
respectively.

400 Digital Electronics

t (min)H

t (min)s

J - Input

Clock
Transition

K - Input

(a)

PRESET - Input

CLEAR - Input

Clock
Transition

t (min)s

(b)

Figure 10.43 Set-up and hold times of a flip-flop.

Flip-Flops and Related Devices 401

tpLH

Q -Output

Clock

tpHL

Q -Output

Clock

Figure 10.44 Propagation delay.

10.9.3 Clock Pulse HIGH and LOW Times

The clock pulse HIGH time tW (H) and clock pulse LOW time, tW (L) are respectively the minimum
time durations for which the clock signal should remain HIGH and LOW. Failure to meet these
requirements can lead to unreliable triggering. Figure 10.45 depicts these timing parameters. tW (H)
and tW (L) for 74ALS109A are 4 and 5.5 ns respectively.

10.9.4 Asynchronous Input Active Pulse Width

This is the minimum time duration for which the asynchronous input (PRESET or CLEAR) must be
kept in its active state, usually LOW, for the output to respond properly. It is 4 ns in the case of
flip-flop 74ALS109A. Figure 10.46 shows this timing parameter.

tw (H) tw (L)

Clock Signal

Figure 10.45 Clock pulse HIGH and LOW times.

402 Digital Electronics

PRESET
————

CLEAR
———

or

tw

Figure 10.46 Asynchronous input active pulse width.

10.9.5 Clock Transition Times

The manufacturers specify the maximum transition times (rise time and fall time) for the output to
respond properly. If these specified figures are exceeded, the flip-flop may respond erratically or even
may not respond at all. This parameter is logic family specific and is not specified for individual
devices. The allowed maximum transition time for TTL devices is much smaller than that for CMOS
devices. Also, within the broad TTL family, it varies from one subfamily to another.

10.9.6 Maximum Clock Frequency

This is the highest frequency that can be applied to the clock input. If this figure is exceeded, there
is no guarantee that the device will work reliably and properly. This figure may vary slightly from
device to device of even the same type number. The manufacturer usually specifies a safe value. If
this specified value is not exceeded, the manufacturer guarantees that the device will trigger reliably.
It is 34 MHz for 74ALS109A.

10.10 Flip-Flop Applications
Flip-flops are used in a variety of application circuits, the most common among these being the
frequency division and counting circuits and data storage and transfer circuits. These application areas
are discussed at length in Chapter 11 on counters and registers. Both these applications use a cascaded
arrangement of flip-flops with or without some additional combinational logic to perform the desired
function. Counters and registers are available in IC form for a variety of digital circuit applications.

Other applications of flip-flops include their use for switch debouncing, where even an unclocked
flip-flop (such as a NAND or a NOR latch) can be used, for synchronizing asynchronous inputs with
the clock input and for identification of edges of synchronous inputs. These are briefly described in
the following paragraphs.

10.10.1 Switch Debouncing

Owing to the switch bounce phenomenon, the mechanical switch cannot be used as such to produce a
clean voltage transition. Refer to Fig. 10.47(a). When the switch is moved from position 1 to position 2,
what is desired at the output is a clean voltage transition from 0 to +V volts, as shown in Fig. 10.47(b).
What actually happens is shown in Fig. 10.47(c). The output makes several transitions between 0 and

Flip-Flops and Related Devices 403

+V

2

1

(a)

+V

0

Bounce

(b)

(c)

Figure 10.47 Switch bounce phenomenon.

+V volts for a few milliseconds owing to contact bounce before it finally settles at +V volts. Similarly,
when it is moved from position 2 back to position 1, it makes several transitions before coming to
rest at 0 V. Although this random behaviour lasts only for a few milliseconds, it is unacceptable for
many digital circuit applications. A NAND or a NOR latch can solve this problem and provide a clean
output transition. Figure 10.48 shows a typical switch debounce circuit built around a NAND latch.
The circuit functions as follows.

When the switch is in position 1, the output is at a ‘0’ level. When it is moved to position 2, the
output goes to a ‘1’ level within a few nanoseconds (depending upon the propagation delay of the
NAND gate) after its first contact with position 2. When the switch contact bounces, it makes and
breaks contact with position 2 before it finally settles at the intended position. Making of contact

404 Digital Electronics

1

2

+V

+V

+V

0

Switch
Moved
from Pos-1
to Pos-2

Switch
Moved
from Pos-2
to Pos-1

Figure 10.48 Switch debounce circuit.

always leads to a ‘1’ level at the output, and breaking of contact also leads to a ‘1’ level at the output
owing to the fact that the contact break produces a ‘1’ level at both inputs of the latch which forces
the output to hold its existing logic state. The fact that when the switch is brought back to position 1
the output makes a neat transition to a ‘0’ level can be explained on similar lines.

10.10.2 Flip-Flop Synchronization

Consider a situation where a certain clock input, which works in conjunction with various synchronous
inputs, is to be gated with an asynchronously generated gating pulse, as shown in Fig. 10.49. The
output in this case has the clock pulses at one or both ends shortened in width, as shown in Fig. 10.49.
This problem can be overcome and the gating operation synchronized with the help of a flip-flop, as
shown in Fig. 10.50.

10.10.3 Detecting the Sequence of Edges

Flip-flops can also be used to detect the sequence of occurrence of rising and falling edges. Figure
10.51 shows how a flip-flop can be used to detect whether a positive-going edge A follows or precedes
another positive-going edge B. The two edges are respectively applied to D and clock inputs of a

Figure 10.49 Gating of a clock signal.

Flip-Flops and Related Devices 405

Clock

D-Input

Q-Output

Output

QD

Clk
FF

Clock

Gating
Pulse

Output

Figure 10.50 Flip-flop synchronization.

FF
Clk

D Q
A

B

Figure 10.51 Detection of the sequence of edges.

positively edge-triggered D flip-flop. If edge A arrives first, then, on arrival of edge B, the output goes
from 0 to 1. If it is otherwise, it stays at a ‘0’ level.

Example 10.7

Figure 10.52 shows two pulsed waveforms A and B, with waveform A leading waveform B in phase,
as shown in the figure. Suggest a flip-flop circuit to detect this condition by producing (a) a logic ‘1’
Q output and (b) a logic ‘0’ Q output.

Solution
(a) A positive edge-triggered D flip-flop, as shown in Fig. 10.53(a), can be used for the purpose.

Waveform A is applied to the D input, and waveform B is applied to the clock input. If we examine
the two waveforms, we will find that, on every occurrence of the leading edge of waveform B,

406 Digital Electronics

(A)

(B)

Figure 10.52 Example 10.7.

Waveform
(A)

D Q

Clk

D Q

ClkWaveform
(A)

Waveform
(B)

Waveform
(B)

(a)

(b)

Figure 10.53 Solution to example 10.7.

Flip-Flops and Related Devices 407

waveform A is in a logic ‘1’ state. Thus, the Q output in this case will always be in a logic ‘1’
state.

(b) By interchanging the connections of waveforms A and B as shown in Fig. 10.53(b), the Q output
will be in a logic ‘0’ state as long as waveform A leads waveform B in phase. In this case, on
every occurrence of the leading edge of waveform A (clock input), waveform B (D input) is in a
logic ‘0’ state.

10.11 Application-Relevant Data
Table 10.1 lists popular type numbers of flip-flops belonging to TTL, CMOS and ECL logic families.
Application-relevant information of some of the popular type numbers is given in the companion
website. The information given includes the pin connection diagram, package style and function table.

Table 10.1 Popular type numbers of flip-flops belonging to the TTL, CMOS and ECL logic families.

IC type Function Logic
number family

54/7473 Dual J -K negative edge-triggered flip-flop with CLEAR TTL
54/7474 Dual D-type positive edge-triggered flip-flop with PRESET and CLEAR TTL
54/7475 Four-bit D-type latch TTL
54/7476 Dual J -K flip-flop with PRESET and CLEAR TTL
54/7478 Dual J -K flip-flop with PRESET and CLEAR TTL
54/74107 Dual J -K flip-flop with CLEAR TTL
54/74109 Dual J -K positive edge-triggered flip-flop with PRESET and CLEAR TTL
54/74112 Dual J -K negative edge-triggered flip-flop with PRESET and CLEAR TTL
54/74113 Dual J -K negative edge-triggered flip-flop with PRESET TTL
54/74114 Dual J -K negative edge-triggered flip-flop with PRESET and CLEAR TTL
54/74121 Monostable multivibrator TTL
54/74122 Retriggerable monostable multivibrator TTL
54/74123 Dual retriggerable monostable multivibrator TTL
54/74174 Hex D-type flip-flop with CLEAR TTL
54/74175 Quad edge triggered D-type flip-flop with CLEAR TTL
54/74221 Dual monostable multivibrator TTL
54/74256 Dual four-bit addressable latch TTL
54/74259 Eight-bit addressable latch TTL
54/74273 Octal D-type flip-flop with MASTER RESET TTL
54/74279 Quad SET/RESET latch TTL
54/74373 Octal transparent latch (three-state) TTL
54/74374 Octal D-type flip-flop (three-state) TTL
54/74377 Octal D-type flip-flop with common ENABLE TTL
54/74378 Hex D-type flip-flop with ENABLE TTL
54/74379 Four-bit D-type flip-flop with ENABLE TTL
54/74533 Octal transparent latch (three-state) TTL
54/74534 Octal D-type flip-flop (three-state) TTL
54/74573 Octal D-type latch (three-state) TTL
54/74574 Octal D-type flip-flop (three-state) TTL

(continued overleaf)

408 Digital Electronics

Table 10.1 (continued).

IC type Function Logic
number family

4013 Dual D-type flip-flop CMOS
4027 Dual J -K flip-flop CMOS
4042 Quad D-type latch CMOS
4044 Quad R-S latch with three-state output CMOS
4047 Low-power monostable/astable multivibrator CMOS
4076 Quad D-type flip-flop with three-state output CMOS
40174 Hex D-type flip-flop CMOS
40175 Quad D-type flip-flop CMOS
4511 BCD to seven-segment latch/decoder/driver CMOS
4528 Dual retriggerable resettable monostable multivibrator CMOS
4543 BCD to seven-segment latch/decoder/driver for LCD CMOS
4723 Dual four-bit addressable latch CMOS
4724 Eight-bit addressable latch CMOS
MC10130 Quad D-type latch ECL
MC10131 Dual D-type master/slave flip-flop ECL
MC10133 Quad D-type latch (negative transition) ECL
MC10135 Dual J -K master/slave flip-flop ECL
MC10153 Quad latch (positive transition) ECL
MC10168 Quad D-type latch ECL
MC10175 Quint latch ECL
MC10176 Hex D-type master/slave flip-flop ECL
MC10198 Monostable multivibrator ECL
MC10231 High-Speed dual D-type M/S flip-flop ECL
MC1666 Dual clocked R-S flip-flop ECL
MC1668 Dual clocked latch ECL
MC1670 D-type master/slave flip-flop ECL
MC1658 Voltage-controlled multivibrator ECL

Review Questions
1. Briefly describe the operational aspects of bistable, monostable and astable multivibrators. Which

multivibrator closely resembles a flip-flop?
2. What is a flip-flop? Show the logic implementation of an R-S flip-flop having active HIGH R and

S inputs. Draw its truth table and mark the invalid entry.
3. With the help of the logic diagram, describe the operation of a clocked R-S flip-flop with active

LOW R and S inputs. Draw the truth table of this flip-flop if it were negatively edge triggered.
4. What is a clocked J -K flip-flop? What improvement does it have over a clocked R-S flip-flop?
5. Differentiate between:

(a) synchronous and asynchronous inputs;
(b) level-triggered and edge-triggered flip-flops;
(c) active LOW and active HIGH inputs.

6. Briefly describe the following flip-flop timing parameters:

Flip-Flops and Related Devices 409

(a) set-up time and hold time;
(b) propagation delay;
(c) maximum clock frequency.

7. Draw the truth table for the following types of flip-flop:

(a) a positive edge-triggered J -K flip-flop with active HIGH J and K inputs and active LOW
PRESET and CLEAR inputs;

(b) a negative edge-triggered J -K flip-flop with active LOW J and K inputs and active LOW
PRESET and CLEAR inputs.

8. What is meant by the race problem in flip-flops? How does a master–slave configuration help in
solving this problem?

9. Differentiate between a D flip-flop and a D latch.
10. Draw the function table for (a) a negative edge-triggered D flip-flop and (b) a D latch with an

active LOW ENABLE input.
11. With the help of a schematic arrangement, explain how a J -K flip-flop can be used as a (a) a D

flip-flop and (b) a T flip-flop.
12. With the help of a suitable circuit, briefly explain how a D flip-flop can be used to detect the

sequence of occurrence of edges of synchronous inputs.

Problems
1. A 100 kHz clock signal is applied to a J -K flip-flop with J = K = 1 .

(a) If the flip-flop has active HIGH J and K inputs and is negative edge triggered, determine the
frequency of the Q and Q outputs.

(b) If the flip-flop has active LOW J and K inputs and is positive edge triggered, what should the
frequency of the Q and Q outputs be? Assume that Q is initially ‘0’.

(a) Q output = 50 kHz, Q output = 50 kHz;
(b) both outputs remain in a logic ‘0’ state

2. In a Schmitt trigger inverter circuit, the two trip points are observed to occur at 1.8 and 2.8 V. At
what input voltage levels will this device make (a) HIGH-to-LOW transition and (b) LOW-to-HIGH
transition?

(a) 2.8 V; (b) 1.8 V

3. In the case of a presettable, clearable J -K flip-flop with active HIGH J and K inputs and active
LOW PRESET and CLEAR inputs, what would the Q output logic status be for the following input
conditions, assuming that Q is initially ‘0’, immediately after it is clocked?

(a) J = 1 , K = 0, PRESET = 1, CLEAR = 1;
(b) J = 1 , K = 1 , PRESET = 0, CLEAR = 1;
(c) J = 0, K = 1 , PRESET = 1, CLEAR = 0;
(d) J = K = 0, PRESET = 0, CLEAR = 1.

(a) 1; (b) 1; (c) 0; (d) 1

410 Digital Electronics

4. Figure 10.54 shows the function table of a certain flip-flop. Identify the flip-flop.
Negative edge-triggered J-K flip-flop with active HIGH J and

K inputs and active LOW PRESET and CLEAR inputs

1
0
0
0
0
0
0

0
1
0
0
0
0
0

X
X
X

X
X
X
1
0
1
0

X
X
X
1
1
1
0

0
1

1
0

Qn

1
0

0
1

Qn

Pr Cl Clk J K Q +1n Q +1n

Unstable

Toggle

Figure 10.54 Problem 4.

5. Derive the expression for Qn+1 in terms of Qn and J and K inputs for a clocked J -K flip-flop with
active LOW J and K inputs. Qn and Qn+1 have the usual meaning.

Qn+1 = J�Qn +K�Qn

6. Consider a J -K flip-flop (J -K flip-flop to be more precise) where an inverter has been wired
between the external K input and the internal K input as shown in Fig. 10.55. With the help of a
characteristic table, write the characteristic equation for this flip-flop.

Qn+1 = J�Qn +K�Qn

J Q

K Q
–

FFClk

K
—

Clk

J

Figure 10.55 Problem 6.

Further Reading
1. Cook, N. P. (2003), Practical Digital Electronics, Prentice-Hall, NJ, USA.
2. Whitaker, C. (1996) The Electronics Handbook, CRC Press (in cooperation with IEEE Press), FL, USA.
3. Tokheim, R. L. (1994) Schaum’s Outline Series of Digital Principles, McGraw-Hill Companies Inc., USA.
4. Tocci, R. J. (2006), Digital Systems – Principles and Applications, Prentice-Hall Inc., NJ, USA.
5. Malvino, A. P. and Leach, D. P. (1994) Digital Principles and Applications, McGraw-Hill, USA.

11
Counters and Registers

Counters and registers belong to the category of MSI sequential logic circuits. They have similar
architecture, as both counters and registers comprise a cascaded arrangement of more than one flip-
flop with or without combinational logic devices. Both constitute very important building blocks of
sequential logic, and different types of counter and register available in integrated circuit (IC) form are
used in a wide range of digital systems. While counters are mainly used in counting applications, where
they either measure the time interval between two unknown time instants or measure the frequency of
a given signal, registers are primarily used for the temporary storage of data present at the output of a
digital circuit before they are fed to another digital circuit. We are all familiar with the role of different
types of register used inside a microprocessor, and also their use in microprocessor-based applications.
Because of the very nature of operation of registers, they form the basis of a very important class of
counters called shift counters. In this chapter, we will discuss different types of counter and register as
regards their operational basics, design methodology and application-relevant aspects. Design aspects
have been adequately illustrated with the help of a large number of solved examples. A comprehensive
functional index of a large number of integrated circuit counters and registers is given towards the end
of the chapter.

11.1 Ripple (Asynchronous) Counter
A ripple counter is a cascaded arrangement of flip-flops where the output of one flip-flop drives the
clock input of the following flip-flop. The number of flip-flops in the cascaded arrangement depends
upon the number of different logic states that it goes through before it repeats the sequence, a parameter
known as the modulus of the counter.

In a ripple counter, also called an asynchronous counter or a serial counter, the clock input is applied
only to the first flip-flop, also called the input flip-flop, in the cascaded arrangement. The clock input
to any subsequent flip-flop comes from the output of its immediately preceding flip-flop. For instance,
the output of the first flip-flop acts as the clock input to the second flip-flop, the output of the second
flip-flop feeds the clock input of the third flip-flop and so on. In general, in an arrangement of n

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

412 Digital Electronics

Q1

FF1

J

K

Q2

FF2

J

K

Qn-1

FF(n-1)

J

K

Qn

FF(n)

J

K

1

Clock

Figure 11.1 Generalized block schematic of n-bit binary ripple counter.

flip-flops, the clock input to the nth flip-flop comes from the output of the (n−1)th flip-flop for n > 1.
Figure 11.1 shows the generalized block schematic arrangement of an n-bit binary ripple counter.

As a natural consequence of this, not all flip-flops change state at the same time. The second
flip-flop can change state only after the output of the first flip-flop has changed its state. That is, the
second flip-flop would change state a certain time delay after the occurrence of the input clock pulse
owing to the fact that it gets its own clock input from the output of the first flip-flop and not from
the input clock. This time delay here equals the sum of propagation delays of two flip-flops, the first
and the second flip-flops. In general, the nth flip-flop will change state only after a delay equal to
n times the propagation delay of one flip-flop. The term ‘ripple counter’ comes from the mode in
which the clock information ripples through the counter. It is also called an ‘asynchronous counter’
as different flip-flops comprising the counter do not change state in synchronization with the input
clock.

In a counter like this, after the occurrence of each clock input pulse, the counter has to wait for a
time period equal to the sum of propagation delays of all flip-flops before the next clock pulse can
be applied. The propagation delay of each flip-flop, of course, will depend upon the logic family to
which it belongs.

11.1.1 Propagation Delay in Ripple Counters

A major problem with ripple counters arises from the propagation delay of the flip-flops constituting
the counter. As mentioned in the preceding paragraphs, the effective propagation delay in a ripple
counter is equal to the sum of propagation delays due to different flip-flops. The situation becomes
worse with increase in the number of flip-flops used to construct the counter, which is the case in larger
bit counters. Coming back to the ripple counter, an increased propagation delay puts a limit on the
maximum frequency used as clock input to the counter. We can appreciate that the clock signal time
period must be equal to or greater than the total propagation delay. The maximum clock frequency
therefore corresponds to a time period that equals the total propagation delay. If tpd is the propagation
delay in each flip-flop, then, in a counter with N flip-flops having a modulus of less than or equal
to 2N , the maximum usable clock frequency is given by fmax = 1/(N × tpd�. Often, two propagation
delay times are specified in the case of flip-flops, one for LOW-to-HIGH transition (tpLH� and the
other for HIGH-to-LOW transition (tpHL� at the output. In such a case, the larger of the two should be
considered for computing the maximum clock frequency.

As an example, in the case of a ripple counter IC belonging to the low-power Schottky TTL (LSTTL)
family, the propagation delay per flip-flop typically is of the order of 25 ns. This implies that a four-bit

Counters and Registers 413

ripple counter from this logic family can not be clocked faster than 10 MHz. The upper limit on the
clock frequency further decreases with increase in the number of bits to be handled by the counter.

11.2 Synchronous Counter
In a synchronous counter, also known as a parallel counter, all the flip-flops in the counter change
state at the same time in synchronism with the input clock signal. The clock signal in this case is
simultaneously applied to the clock inputs of all the flip-flops. The delay involved in this case is equal
to the propagation delay of one flip-flop only, irrespective of the number of flip-flops used to construct
the counter. In other words, the delay is independent of the size of the counter.

11.3 Modulus of a Counter
The modulus (MOD number) of a counter is the number of different logic states it goes through before
it comes back to the initial state to repeat the count sequence. An n-bit counter that counts through
all its natural states and does not skip any of the states has a modulus of 2n. We can see that such
counters have a modulus that is an integral power of 2, that is, 2, 4, 8, 16 and so on. These can be
modified with the help of additional combinational logic to get a modulus of less than 2n.

To determine the number of flip-flops required to build a counter having a given modulus, identify
the smallest integer m that is either equal to or greater than the desired modulus and is also equal
to an integral power of 2. For instance, if the desired modulus is 10, which is the case in a decade
counter, the smallest integer greater than or equal to 10 and which is also an integral power of 2 is
16. The number of flip-flops in this case would be 4, as 16 = 24. On the same lines, the number of
flip-flops required to construct counters with MOD numbers of 3, 6, 14, 28 and 63 would be 2, 3, 4, 5
and 6 respectively. In general, the arrangement of a minimum number of N flip-flops can be used to
construct any counter with a modulus given by the equation

�2N −1 + 1� ≤ modulus ≤ 2N (11.1)

11.4 Binary Ripple Counter – Operational Basics
The operation of a binary ripple counter can be best explained with the help of a typical counter of
this type. Figure 11.2(a) shows a four-bit ripple counter implemented with negative edge-triggered
J-K flip-flops wired as toggle flip-flops. The output of the first flip-flop feeds the clock input of the
second, and the output of the second flip-flop feeds the clock input of the third, the output of which
in turn feeds the clock input of the fourth flip-flop. The outputs of the four flip-flops are designated as
Q0 (LSB flip-flop), Q1, Q2 and Q3 (MSB flip-flop). Figure 11.2(b) shows the waveforms appearing at
Q0, Q1, Q2 and Q3 outputs as the clock signal goes through successive cycles of trigger pulses. The
counter functions as follows.

Let us assume that all the flip-flops are initially cleared to the ‘0’ state. On HIGH-to-LOW transition
of the first clock pulse, Q0 goes from ‘0’ to ‘1’ owing to the toggling action. As the flip-flops used
are negative edge-triggered ones, the ‘0’ to ‘1’ transition of Q0 does not trigger flip-flop FF1. FF1,
along with FF2 and FF3, remains in its ‘0’ state. So, on the occurrence of the first negative-going
clock transition, Q0 = 1, Q1 = 0, Q2 = 0 and Q3 = 0.

On the HIGH-to-LOW transition of the second clock pulse, Q0 toggles again. That is, it goes from
‘1’ to ‘0’. This ‘1’ to ‘0’ transition at the Q0 output triggers FF1, the output Q1 of which goes from ‘0’

414 Digital Electronics

Q0

FF0

J

K

(a)

Q1

FF1

J

K

Q2

FF2

J

K

Q3

FF3

J

K

1

Clock

Q0 Q1 Q2 Q3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clock-Input

Q0-Output

Q1-Output

Q2-Output

Q3-Output

(b)

Figure 11.2 Four-bit binary ripple counter.

to ‘1’. The Q2 and Q3 outputs remain unaffected. Therefore, immediately after the occurrence of the
second HIGH-to-LOW transition of the clock signal, Q0 = 0, Q1 = 1, Q2 = 0 and Q3 = 0. On similar
lines, we can explain the logic status of Q0, Q1, Q2 and Q3 outputs immediately after subsequent clock
transitions. The logic status of outputs for the first 16 relevant (HIGH-to-LOW in the present case)
clock signal transitions is summarized in Table 11.1.

Thus, we see that the counter goes through 16 distinct states from 0000 to 1111 and then, on the
occurrence of the desired transition of the sixteenth clock pulse, it resets to the original state of 0000
from where it had started. In general, if we had N flip-flops, we could count up to 2N pulses before the
counter resets to the initial state. We can also see from the Q0, Q1, Q2 and Q3 waveforms, as shown

Counters and Registers 415

Table 11.1 Output logic states for different clock signal transitions
for a four-bit binary ripple counter.

Clock signal transition number Q0 Q1 Q2 Q3

After first clock transition 1 0 0 0
After second clock transition 0 1 0 0
After third clock transition 1 1 0 0
After fourth clock transition 0 0 1 0
After fifth clock transition 1 0 1 0
After sixth clock transition 0 1 1 0
After seventh clock transition 1 1 1 0
After eighth clock transition 0 0 0 1
After ninth clock transition 1 0 0 1
After tenth clock transition 0 1 0 1
After eleventh clock transition 1 1 0 1
After twelfth clock transition 0 0 1 1
After thirteenth clock transition 1 0 1 1
After fourteenth clock transition 0 1 1 1
After fifteenth clock transition 1 1 1 1
After sixteenth clock transition 0 0 0 0

in Fig. 11.2(b), that the frequencies of the Q0, Q1, Q2 and Q3 waveforms are f/2,f/4, f/8 and f/16
respectively. Here, f is the frequency of the clock input. This implies that a counter of this type can be
used as a divide-by-2N circuit, where N is the number of flip-flops in the counter chain. In fact, such a
counter provides frequency-divided outputs of f/2N , f/2N−1, f/2N−2, f/2N−3, � � � , f /2 at the outputs
of the N th, (N− 1)th, (N − 2)th, (N− 3)th, � � � , first flip-flops. In the case of a four-bit counter of the
type shown in Fig. 11.2(a), outputs are available at f/2 from the Q0 output, at f/4 from the Q1 output,
at f/8 from the Q2 output and at f/16 from the Q3 output. It may be noted that frequency division is
one of the major applications of counters.

Example 11.1

A four-bit binary ripple counter of the type shown in Fig. 11.2(a) is initially in the 0000 state before
the clock input is applied to the counter. The clock pulses are applied to the counter at some time
instant t1 and then again removed some time later at another time instant t2. The counter is observed
to read 0011. How many negative-going clock transitions have occurred during the time the clock was
active at the counter input?

Solution
It is not possible to determine the number of clock edges – it could have been 3, 19, 35, 51, 67,
83 � � � – as there is no means of finding out whether the counter has recycled or not from the
given data. Remember that this counter would come back to the 0000 state after every 16 clock
pulses.

416 Digital Electronics

Example 11.2

It is desired to design a binary ripple counter of the type shown in Fig. 11.1 that is capable of counting
the number of items passing on a conveyor belt. Each time an item passes a given point, a pulse is
generated that can be used as a clock input. If the maximum number of items to be counted is 6000,
determine the number of flip-flops required.

Solution
• The counter should be able to count a maximum of 6000 items.
• An N -flip-flop would be able to count up to a maximum of 2N − 1 counts.
• On the 2N th clock pulse, it will get reset to all 0s.
• Now, 2N − 1 should be greater than or equal to 6000.
• That is, 2N − 1 ≥ 6000, which gives N ≥ log 6001/log 2 ≥ 3.778/0.3010 ≥ 12.55.
• The smallest integer that satisfies this condition is 13.
• Therefore, the minimum number of flip-flops required=13

11.4.1 Binary Ripple Counters with a Modulus of Less than 2N

An N -flip-flop binary ripple counter can be modified, as we will see in the following paragraphs, to
have any other modulus less than 2N with the help of simple externally connected combinational logic.
We will illustrate this simple concept with the help of an example.

Consider the four-flip-flop binary ripple counter arrangement of Fig. 11.3(a). It uses J-K flip-flops
with an active LOW asynchronous CLEAR input. The NAND gate in the figure has its output connected
to the CLEAR inputs of all four flip-flops. The inputs to this three-input NAND gate are from the Q
outputs of flip-flops FF0, FF1 and FF2. If we disregard the NAND gate for some time, this counter
will go through its natural binary sequence from 0000 to 1111. But that is not to happen in the present
arrangement. The counter does start counting from 0000 towards its final count of 1111. The counter
keeps counting as long as the asynchronous CLEAR inputs of the different flip-flops are inactive. That
is, the NAND gate output is HIGH. This is the case until the counter reaches 0110. With the seventh
clock pulse it tends to go to 0111, which makes all NAND gate inputs HIGH, forcing its output to
LOW. This HIGH-to-LOW transition at the NAND gate output clears all flip-flop outputs to the logic
‘0’ state, thus disallowing the counter to settle at 0111. From the eighth clock pulse onwards, the
counter repeats the sequence. The counter thus always counts from 0000 to 0110 and resets back to
0000. The remaining nine states, which include 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110 and
1111, are skipped, with the result that we get an MOD-7 counter.

Figure 11.3(b) shows the timing waveforms for this counter. By suitably choosing NAND inputs,
one can get a counter with any MOD number less than 16. Examination of timing waveforms also
reveals that the frequency of the Q2 output is one-seventh of the input clock frequency.

The waveform at the Q2 output is, however, not symmetrical as it would be if the counter were to
go through its full binary sequence. The Q3 output stays in the logic LOW state. It is expected to be
so because an MOD-7 counter needs a minimum of three flip-flops. That is why the fourth flip-flop,
which was supposed to toggle on the HIGH-to-LOW transition of the eighth clock pulse, and on every
successive eighth pulse thereafter, never gets to that stage. The counter is cleared on the seventh clock
pulse and every successive seventh clock pulse thereafter.

As another illustration, if the NAND gate used in the counter arrangement of Fig. 11.3(a) is a
two-input NAND and its inputs are from the Q1 and Q3 outputs, the counter will go through 0000 to
1001 and then reset to 0000 again, as, the moment the counter tends to switch from the 1001 to the
1010 state, the NAND gate goes from the ‘1’ to the ‘0’ state, clearing all flip-flops to the ‘0’ state.

Counters and Registers 417

Q0

FF0

J

K

Q1

FF1

J

K

Q2

FF2

J

K

Q3

FF3

J

K

1

Clock In

Q0

Clk

Clear

Clk

Clear

Clk

Clear

Clk

Clear

Q1 Q2 Q3

1 2 3 4 5 6 7 8 9 10 11 12

Clock In

1

1

1

Q0

0

Q1

0

Q2

0

Q3

1

0

NAND
Output

0

(a)

(b)

Figure 11.3 Binary ripple counter with a modulus of less than 2N .

418 Digital Electronics

Steps to be followed to design any binary ripple counter that starts from 0000 and has a modulus of
X are summarized as follows:

1. Determine the minimum number of flip-flops N so that 2N ≥ X� Connect these flip-flops as a
binary ripple counter. If 2N = X, do not go to steps 2 and 3.

2. Identify the flip-flops that will be in the logic HIGH state at the count whose decimal equivalent is
X. Choose a NAND gate with the number of inputs equal to the number of flip-flops that would
be in the logic HIGH state. As an example, if the objective were to design an MOD-12 counter,
then, in the corresponding count, that is, 1100, two flip-flops would be in the logic HIGH state.
The desired NAND gate would therefore be a two-input gate.

3. Connect the Q outputs of the identified flip-flops to the inputs of the NAND gate and the NAND
gate output to asynchronous clear inputs of all flip-flops.

11.4.2 Ripple Counters in IC Form

In this section, we will look at the internal logic diagram of a typical binary ripple counter and see how
close its architecture is to the ripple counter described in the previous section. Let us consider binary
ripple counter type number 74293. It is a four-bit binary ripple counter containing four master–slave-
type J-K flip-flops with additional gating to provide a divide-by-2 counter and a three-stage MOD-8
counter. Figure 11.4 shows the internal logic diagram of this counter. To get the full binary sequence
of 16 states, the Q output of the LSB flip-flop is connected to the B input, which is the clock input of
the next higher flip-flop. The arrangement then becomes the same as that shown in Fig. 11.2(a), with
the exception of the two-input NAND gate of Fig. 11.4, which has been included here for providing
the clearing features. The counter can be cleared to the 0000 logic state by driving both RESET inputs to
the logic HIGH state. Tables 11.2 and 11.3 respectively give the functional table and the count sequence.

Example 11.3

Refer to the binary ripple counter of Fig. 11.5. Determine the modulus of the counter and also the
frequency of the flip-flop Q3 output.

QAJ

K

Input-A

R0(1)

QA

Clk

QBJ

K

QB

Clk

QCJ

K

QC

Clk

QDJ

K

QD

Clk

R0(2)

Input-B

Figure 11.4 Logic diagram of IC 74293.

Counters and Registers 419

Table 11.2 Functional table for binary ripple counter, type number 74293.

RESET inputs Outputs

R0(1) R0(2) QD QC QB QA

H H L L L L
L X Count
X L Count

Table 11.3 Count sequence for binary ripple counter, type number 74293.

Count Outputs

QD QC QB QA

0 L L L L
1 L L L H
2 L L H L
3 L L H H
4 L H L L
5 L H L H
6 L H H L
7 L H H H
8 H L L L
9 H L L H

10 H L H L
11 H L H H
12 H H L L
13 H H L H
14 H H H L
15 H H H H

Solution
• The counter counts in the natural sequence from 0000 to 1011.
• The moment the counter goes to 1100, the NAND output goes to the logic ‘0’ state and immediately

clears the counter to the 0000 state.
• Thus, the counter is not able to stay in the 1100 state. It has only 12 stable states from 0000 to 1011.
• Therefore, the modulus of the counter=12.
• The Q3 output is the input clock frequency divided by 12.
• Therefore, the frequency of the Q3 output waveform =1.2×103/12=100 kHz.

Example 11.4

Design a binary ripple counter that counts 000 and 111 and skips the remaining six states, that is,
001, 010, 011, 100, 101 and 110. Use presentable, clearable negative edge-triggered J-K flip-flops
with active LOW PRESET and CLEAR inputs. Also, draw the timing waveforms and determine the
frequency of different flip-flop outputs for a given clock frequency, fc�

420 Digital Electronics

Q0

FF0

J

K

Q1

FF1

J

K

Q2

FF2

J

K

Q3

FF3

J

K

1.2MHZ

1

Clk

Cl

Clk

Cl

Clk

Cl

Clk

Cl

Figure 11.5 Example 11.3.

Solution
The counter is required to go to the 111 state from the 000 state with the first relevant clock
transition. The second transition brings it back to the 000 state. That is, the three flip-flops toggle
from logic ‘0’ state to logic ‘1’ state with every odd-numbered clock transition, and also the three
flip-flops toggle from logic ‘1’ state to logic ‘0’ state with every even-numbered clock transition.
Figure 11.6(a) shows the arrangement. The PRESET inputs of the three flip-flops have been tied to
the NAND output whose inputs are QA�QB and QC� Every time the counter is in the 000 state and
is clocked, the NAND output momentarily goes from logic ‘1’ state to logic ‘0’ state, thus presetting
the QA�QB and QC outputs to the logic ‘1’ state. The timing waveforms as shown in Fig. 11.6(b) are
self-explanatory.

The QA, QBand QCwaveforms are identical, and each of them has a frequency of fc/2, where fc is
the clock frequency.

Example 11.5

Refer to the binary ripple counter arrangement of Fig. 11.7. Write its count sequence if it is initially
in the 0000 state. Also draw the timing waveforms.

Solution
The counter is initially in the 0000 state. With the first clock pulse, Q0 toggles from the ‘0’ to the ‘1’
state, which means Q0 toggles from ‘1’ to ‘0’. Since Q0 here feeds the clock input of next flip-flop,
flip-flop FF1 also toggles. Thus, Q1 goes from ‘0’ to ‘1’. Since flip-flops FF2 and FF3 are also clocked
from complementary outputs of their immediately preceding flip-flops, they also toggle. Thus, the
counter moves from the 0000 state to the 1111 state with the first clock pulse.

With the second clock pulse, Q0 toggles again, but the other flip-flops remain unaffected for
obvious reasons and the counter is in the 1110 state. With subsequent clock pulses, the counter
keeps counting downwards by one LSB at a time until it reaches 0000 again, after which the process
repeats. The count sequence is given as 0000, 1111, 1110, 1101,1100, 1011, 1010, 1001, 1000,

Counters and Registers 421

QA

FF0

J

K

'1'

Clock
Clk

Cl

Pr

QA

QB

FFB

J

K

Clk

Cl

Pr

QB

QC

FFC

J

K

Clk

Cl

Pr

QC

(a)

Clock

(b)

QA

QB

QC

Preset

Figure 11.6 Example 11.4.

0111, 0110, 0101, 0100, 0011, 0010, 0001 and 0000. The timing waveforms are shown in Fig.
11.8. Thus, we have a four-bit counter that counts in the reverse sequence, beginning with the
maximum count. This is a DOWN counter. This type of counter is discussed further in the subsequent
paragraphs.

422 Digital Electronics

Q0

FF0

J

K

‘1’

Clock

Q0(LSB)

Clk

Q1

FF1

J

K

Q1

Clk

Q2

FF2

J

K

Q2

Clk

Q3

FF3

J

K

Q3(MSB)

Clk

Q0 Q1 Q2 Q3

Input

Figure 11.7 Counter schematic, example 11.5.

Clock
Input

Q0

Q1

Q2

Q3

Figure 11.8 Timing waveforms, example 11.5.

From what we have discussed for a binary ripple counter, including the solved examples given to
supplement the text, we can make the following observations:

1. If the flip-flops used to construct the counter are negative (HIGH-to-LOW) edge triggered and the
clock inputs are fed from Q outputs, the counter counts in the normal upward count sequence.

2. If the flip-flops used to construct the counter are negative edge triggered and the clock inputs are
fed from Q outputs, the counter counts in the reverse or downward count sequence.

3. If the flip-flops used to construct the counter are positive (LOW-to-HIGH) edge triggered and the
clock inputs are fed from Q outputs, the counter counts in the reverse or downward count sequence.

4. If the flip-flops used to construct the counter are positive edge triggered and the clock inputs are
fed from the Q outputs, the counter counts in the normal upward count sequence.

Counters and Registers 423

11.5 Synchronous (or Parallel) Counters
Ripple counters discussed thus far in this chapter are asynchronous in nature as the different flip-
flops comprising the counter are not clocked simultaneously and in synchronism with the clock
pulses. The total propagation delay in such a counter, as explained earlier, is equal to the sum of
propagation delays due to different flip-flops. The propagation delay becomes prohibitively large in
a ripple counter with a large count. On the other hand, in a synchronous counter, all flip-flops in the
counter are clocked simultaneously in synchronism with the clock, and as a consequence all flip-flops
change state at the same time. The propagation delay in this case is independent of the number of
flip-flops used.

Since the different flip-flops in a synchronous counter are clocked at the same time, there needs to
be additional logic circuitry to ensure that the various flip-flops toggle at the right time. For instance,
if we look at the count sequence of a four-bit binary counter shown in Table 11.4, we find that
flip-flop FF0 toggles with every clock pulse, flip-flop FF1 toggles only when the output of FF0 is
in the ‘1’ state, flip-flop FF2 toggles only with those clock pulses when the outputs of FF0 and FF1
are both in the logic ‘1’ state and flip-flop FF3 toggles only with those clock pulses when Q0�Q1

and Q2 are all in the logic ‘1’ state. Such logic can be easily implemented with AND gates. Figure
11.9(a) shows the schematic arrangement of a four-bit synchronous counter. The timing waveforms
are shown in Fig. 11.9(b). The diagram is self-explanatory. As an example, ICs 74162 and 74163
are four-bit synchronous counters, with the former being a decade counter and the latter a binary
counter.

A synchronous counter that counts in the reverse or downward sequence can be constructed in a
similar manner by using complementary outputs of the flip-flops to drive the J and K inputs of the
following flip-flops. Refer to the reverse or downward count sequence as given in Table 11.5. As is
evident from the table, FF0 toggles with every clock pulse, FF1 toggles only when Q0 is logic ‘0’,
FF2 toggles only when both Q0 and Q1 are in the logic ‘0’ state and FF3 toggles only when Q0, Q1

and Q2 are in the logic ‘0’ state.
Referring to the four-bit synchronous UP counter of Fig. 11.9(a), if the J and K inputs of flip-flop

FF1 are fed from the Q0 output instead of the Q0 output, the inputs to the two-input AND gate are Q0

and Q1 instead of Q0 and Q1, and the inputs to the three-input AND gate are Q0, Q1 and Q2 instead
of Q0, Q1 and Q2�, we get a counter that counts in reverse order. In that case it becomes a four-bit
synchronous DOWN counter.

Table 11.4 Count sequence of a four-bit binary counter.

Count Q3 Q2 Q1 Q0 Count Q3 Q2 Q1 Q0

0 0 0 0 0 8 1 0 0 0
1 0 0 0 1 9 1 0 0 1
2 0 0 1 0 10 1 0 1 0
3 0 0 1 1 11 1 0 1 1
4 0 1 0 0 12 1 1 0 0
5 0 1 0 1 13 1 1 0 1
6 0 1 1 0 14 1 1 1 0
7 0 1 1 1 15 1 1 1 1

424 Digital Electronics

Q0

FF0

J

K

1

Clock

Clk

Q1

FF1

J

K

Clk

Q0 Q1

(a)

Q2

FF2

J

K

Clk

Q2

Q3

FF3

J

K

Clk

Q3

Clock

(b)

Q0

Q1

Q2

Q3

Figure 11.9 Four-bit synchronous counter.

Counters and Registers 425

Table 11.5 Reverse or downward count sequence synchronous counter.

Count Q3 Q2 Q1 Q0 Count Q3 Q2 Q1 Q0

0 0 0 0 0 8 1 0 0 0
1 1 1 1 1 9 0 1 1 1
2 1 1 1 0 10 0 1 1 0
3 1 1 0 1 11 0 1 0 1
4 1 1 0 0 12 0 1 0 0
5 1 0 1 1 13 0 0 1 1
6 1 0 1 0 14 0 0 1 0
7 1 0 0 1 15 0 0 0 1

11.6 UP/DOWN Counters
Counters are also available in integrated circuit form as UP/DOWN counters, which can be made
to operate as either UP or DOWN counters. As outlined in Section 11.5, an UP counter is one that
counts upwards or in the forward direction by one LSB every time it is clocked. A four-bit binary
UP counter will count as 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011,
1100, 1101, 1110, 1111, 0000, 0001, � � � and so on. A DOWN counter counts in the reverse direction
or downwards by one LSB every time it is clocked. The four-bit binary DOWN counter will count as
0000, 1111, 1110, 1101, 1100, 1011, 1010, 1001, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001,
0000, 1111, � � � and so on.

Some counter ICs have separate clock inputs for UP and DOWN counts, while others have a single
clock input and an UP/DOWN control pin. The logic status of this control pin decides the counting
mode. As an example, ICs 74190 and 74191 are four-bit UP/DOWN counters in the TTL family with
a single clock input and an UP/DOWN control pin. While IC 74190 is a BCD decade counter, IC
74191 is a binary counter. Also, ICs 74192 and 74193 are four-bit UP/DOWN counters in the TTL
family, with separate clock input terminals for UP and DOWN counts. While IC 74192 is a BCD
decade counter, IC 74193 is a binary counter.

Figure 11.10 shows a three-bit binary UP/DOWN counter. This is only one possible logic
arrangement. As we can see, the counter counts upwards when UP control is logic ‘1’ and DOWN

Q0J

K

1

Clk

Q0

Q1J

K

Clk

Q1

Q0

Q0

Q2J

K

Clk
Clock
Input

UP-Control

DOWN
Control

Figure 11.10 Four-bit UP/DOWN counter.

426 Digital Electronics

Q0J

K

1

Clk
Clock
Input FF0

Q1J

K

Clk FF1

Q2J

K

Clk FF2

Up/Down
Control

Figure 11.11 Three-bit UP/DOWN counter with a common clock input.

control is logic ‘0’. In this case the clock input of each flip-flop other than the LSB flip-flop is fed
from the normal output of the immediately preceding flip-flop. The counter counts downwards when
the UP control input is logic ‘0’ and DOWN control is logic ‘1’. In this case, the clock input of
each flip-flop other than the LSB flip-flop is fed from the complemented output of the immediately
preceding flip-flop. Figure 11.11 shows another possible configuration for a three-bit binary ripple
UP/DOWN counter. It has a common control input. When this input is in logic ‘1’ state the counter
counts downwards, and when it is in logic ‘0’ state it counts upwards.

11.7 Decade and BCD Counters
A decade counter is one that goes through 10 unique output combinations and then resets as the
clock proceeds further. Since it is an MOD-10 counter, it can be constructed with a minimum of four
flip-flops. A four-bit counter would have 16 states. By skipping any of the six states by using some
kind of feedback or some kind of additional logic, we can convert a normal four-bit binary counter into
a decade counter. A decade counter does not necessarily count from 0000 to 1001. It could even count
as 0000, 0001, 0010, 0101, 0110, 1001, 1010, 1100, 1101, 1111, 0000, � � � In this count sequence, we
have skipped 0011, 0100, 0111, 1000, 1011 and 1110.

A BCD counter is a special case of a decade counter in which the counter counts from 0000
to 1001 and then resets. The output weights of flip-flops in these counters are in accordance with
8421-code. For instance, at the end of the seventh clock pulse, the counter output will be 0111, which
is the binary equivalent of decimal 7. In other words, different counter states in this counter are
binary equivalents of the decimal numbers 0 to 9. These are different from other decade counters
that provide the same count by using some kind of forced feedback to skip six of the natural binary
counts.

11.8 Presettable Counters
Presettable counters are those that can be preset to any starting count either asynchronously
(independently of the clock signal) or synchronously (with the active transition of the clock signal).
The presetting operation is achieved with the help of PRESET and CLEAR (or MASTER RESET)
inputs available on the flip-flops. The presetting operation is also known as the ‘preloading’ or simply
the ‘loading’ operation.

Counters and Registers 427

Presettable counters can be UP counters, DOWN counters or UP/DOWN counters. Additional
inputs/outputs available on a presettable UP/DOWN counter usually include PRESET inputs, from
where any desired count can be loaded, parallel load (PL) inputs, which when active allow the PRESET
inputs to be loaded onto the counter outputs, and terminal count (TC) outputs, which become active
when the counter reaches the terminal count.

Figure 11.12 shows the logic diagram of a four-bit presettable synchronous UP counter. The data
available on P3, P2, P1 and P0 inputs are loaded onto the counter when the parallel load (PL� input
goes LOW.

When the PL input goes LOW, one of the inputs of all NAND gates, including the four NAND gates
connected to the PRESET inputs and the four NAND gates connected to the CLEAR inputs, goes to
the logic ‘1’ state. What reaches the PRESET inputs of FF3, FF2, FF1 and FF0 is P3� P2� P1 and P0

respectively, and what reaches their CLEAR inputs is P3, P2, P1 and P0 respectively. Since PRESET
and CLEAR are active LOW inputs, the counter flip-flops FF3, FF2, FF1 and FF0 will respectively be
loaded with P3, P2, P1 and P0. For example, if P3 = 1, the PRESET and CLEAR inputs of FF3 will be
in the ‘0’ and ‘1’ logic states respectively. This implies that the Q3 output will go to the logic ‘1’ state.
Thus, FF3 has been loaded with P3. Similarly, if P3 = 0, the PRESET and CLEAR inputs of flip-flop
FF3 will be in the ‘1’ and ‘0’ states respectively. The flip-flop output (Q3 output) will be cleared to
the ‘0’ state. Again, the flip-flop is loaded with P3 logic status when the PL input becomes active.

Counter ICs 74190, 74191, 74192 and 74193 are asynchronously presettable synchronous UP/DOWN
counters. Many synchronous counters use synchronous presetting whereby the counter is preset or
loaded with the data on the active transition of the same clock signal that is used for counting.
Presettable counters also have terminal count (TC� outputs, which allow them to be cascaded together
to get counters with higher MOD numbers. In the cascade arrangement, the terminal count output of
the lower-order counter feeds the clock input of the next higher-order counter. Cascading of counters
is discussed in Section 11.10.

Q0J

K

Clk FF0

Pr

Clr

P0

Q1J

K

Clk FF1

Pr

Clr

P1

Q2J

K

Clk FF2

Pr

Clr

P2

Q3J

K

Clk FF3

Pr

Clr

P3

PL

Clock
in

1

Figure 11.12 Four-bit presettable, clearable counter.

428 Digital Electronics

Clk(UP)

Clk(Down)

TCD

TCU

P3 P2 P1 P0

Q3 Q2 Q1 Q0

PL

01 10

Figure 11.13 Presettable four-bit counter.

11.8.1 Variable Modulus with Presettable Counters

Presettable counters can be wired as counters with a modulus of less than 2N without the need for any
additional logic circuitry. When a presettable counter is preset with a binary number whose decimal
equivalent is some number ‘X’, and if this counter is wired as a DOWN counter, with its terminal
count (DOWN mode) output, also called borrow-out (Bo�, fed back to the parallel load (PL) input, it
works like an MOD-X counter.

We will illustrate this with the help of an example. Refer to Fig. 11.13. It shows a presettable four-bit
synchronous UP/DOWN binary counter having separate clock inputs for UP and DOWN counting
(both positive edge triggered), an active LOW parallel load input (PL� and active LOW terminal count
UP (TCU� and terminal count DOWN (TCD� outputs. This description is representative of IC counter
type 74193. Let us assume that the counter is counting down and is presently in the 1001 state at time
instant t0. The TCD output is in the logic ‘1’ state, and so is the PL input. That is, both are inactive. The
counter counts down by one LSB at every positive-going edge of the clock input. Immediately after the
ninth positive-going trigger (at time instant t9�, the counter is in the 0000 state, which is the terminal
count. Coinciding with the negative-going edge of the same clock pulse, the TCD output goes to the
logic ‘0’ state, and so does the PL input. This loads the counter with 1001 at time instant t10, as shown
in the timing waveforms of Fig. 11.14. With the positive-going edges of the tenth clock pulse and
thereafter, the counter repeats its DOWN count sequence. Examination of the Q3 output waveform tells
that its frequency is one-ninth of the input clock frequency. Thus, it is an MOD-9 counter. The modulus
of the counter can be varied by varying the data loaded onto the parallel PRESET/LOAD inputs.

11.9 Decoding a Counter
The output state of a counter at any time instant, as it is being clocked, is in the form of a sequence
of binary digits. For a large number of applications, it is important to detect or decode different states
of the counter whose number equals the modulus of the counter. One typical application could be a
need to initiate or trigger some action after the counter reaches a specific state. The decoding network
therefore is going to be a logic circuit that takes its inputs from the outputs of the different flip-flops
constituting the counter and then makes use of those data to generate outputs equal to the modulus or
MOD-number of the counter.

Counters and Registers 429

Clk(D)

Q0

Q1

Q2

Q3

TCD
or
PL

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 11.14 Timing waveforms for the counter of Fig. 11.13.

Depending upon the logic status of the decoded output, there are two basic types of decoding,
namely active HIGH decoding and active LOW decoding. In the case of the former the decoder outputs
are normally LOW, and for a given counter state the corresponding decoder output goes to the logic
HIGH state. In the case of active LOW decoding, the decoder outputs are normally HIGH and the
decoded output representing the counter state goes to the logic LOW state.

We will further illustrate the concept of decoding a counter with the help of an example. Consider
the two-stage MOD-4 ripple counter of Fig. 11.15(a). This counter has four possible logic states, which
need to be decoded. These include 00, 01, 10 and 11. Let us now consider the arrangement of four
two-input AND gates as shown in Fig. 11.15(b) and what their outputs look like as the counter clock
goes through the first four pulses. Before we proceed further, we have two important observations to
make. Firstly, the number of AND gates used in the decoder network equals the number of logic states
to be decoded, which further equals the modulus of the counter. Secondly, the number of inputs to
each AND gate equals the number of flip-flops used in the counter. We can see from the waveforms
of Fig. 11.15(b) that, when the counter is in the 00 state, the AND gate designated ‘0’ is in the logic
HIGH state and the outputs of the other gates designated ‘1’, ‘2’ and ‘3’ are in the logic LOW state.
Similarly, for 01, 10 and 11 states of the counter, the outputs of gates 1, 2 and 3 are respectively in
the logic HIGH state. This is incidentally active HIGH decoding. We can visualize that, if the AND
gates were replaced with NAND gates, with the inputs to the gates remaining the same, we would get
an active LOW decoder. For a counter that uses N flip-flops and has a modulus of ‘X’, the decoder
will have ‘X’ number of N -input AND or NAND gates, depending upon whether we want an active
HIGH or active LOW decoder.

430 Digital Electronics

A B BA

1

2

3

0

(b)

A

FFA

J

K

B

FFB

J

K

1

Clock

A B

(a)

Figure 11.15 MOD-4 ripple counter with decoding logic.

Counters and Registers 431

Output0

Output1

Output2

Output3

Output4

Output5

Output6

Output7

Output8

Output9

A

A

B

B

C

C

D

D

Input D

Input C

Input B

Input A

Figure 11.16 Logic diagram of four-line BCD-to-decimal decoder (IC 7442).

Figure 11.16 shows the logic diagram of a four-line BCD to decimal decoder with active low outputs.
Full decoding of valid input logic states ensures that all outputs remain off or inactive for all invalid
input conditions. Table 11.6 gives the functional table of the decoder of Fig. 11.16. The logic diagram
shown in Fig. 11.16 is the actual logic diagram of IC 7442, which is a four-line BCD to decimal
decoder in the TTL family.

The decoding gates used to decode the states of a ripple counter produce glitches (or spikes) in the
decoded waveforms. These glitches basically result from the cumulative propagation delay as we move
from one flip-flop to the next in a ripple counter. It can be best illustrated with the help of the MOD-4
counter shown in Fig. 11.17. The timing waveforms are shown in Fig. 11.18 and are self-explanatory.

432 Digital Electronics

Table 11.6 Functional table of the decoder of Fig. 11.16.

Decimal number BCD input Decimal output

D C B A 0 1 2 3 4 5 6 7 8 9

0 L L L L L H H H H H H H H H
1 L L L H H L H H H H H H H H
2 L L H L H H L H H H H H H H
3 L L H H H H H L H H H H H H
4 L H L L H H H H L H H H H H
5 L H L H H H H H H L H H H H
6 L H H L H H H H H H L H H H
7 L H H H H H H H H H H L H H
8 H L L L H H H H H H H H L H
9 H L L H H H H H H H H H H L

Invalid H L H L H H H H H H H H H H
Invalid H L H H H H H H H H H H H H
Invalid H H L L H H H H H H H H H H
Invalid H H L H H H H H H H H H H H
Invalid H H H L H H H H H H H H H H
Invalid H H H H H H H H H H H H H H

Figure 11.17 MOD-4 counter with decoding gates.

We can see the appearance of glitches at the output of decoding gates that decode X0 and X2 states�This
problem for all practical purposes is absent in synchronous counters. Theoretically, it can even exist
in a synchronous counter if the flip-flops used have different propagation delays.

One way to overcome this problem is to use a strobe signal which keeps the decoding gates disabled
until all flip-flops have reached a stable state in response to the relevant clock transition. To implement

Counters and Registers 433

Clock

A-Output

B-Output

X0

X1

X2

X3

Figure 11.18 Glitch problem in decoders.

this, each of the decoding gates will have an additional input. This additional input of all decoding
gates is tied together and the strobe signal applied to the common point.

One such decoder with additional strobe inputs to take care of glitch-related problems is IC 74154,
which is a four-line to 16-line decoder in the TTL family. Figure 11.19 shows the internal logic
diagram of IC 74154. We can see all NAND gates having an additional input line, which is controlled
by strobe inputs G1 and G2.

11.10 Cascading Counters
A cascade arrangement allows us to build counters with a higher modulus than is possible with a
single stage. The terminal count outputs allow more than one counter to be connected in a cascade
arrangement. In the following paragraphs, we will examine some such cascade arrangements in the
case of binary and BCD counters.

11.10.1 Cascading Binary Counters

In order to construct a multistage UP counter, all counter stages are connected in the count UP mode.
The clock is applied to the clock input of a lowest-order counter, the terminal count UP (TCU), also
called the carry-out (Co�, of this counter is applied to the clock input of the next higher counter stage

434 Digital Electronics

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A B C D

A

B

D

D

C

A

B

C

G

A

A

A

B

B

B

C

C

C

D

D

D

G1

G2

Inputs Outputs

Figure 11.19 Logic diagram of IC 74154.

Counters and Registers 435

CLK(UP)

CLK(DOWN)

TCU

TCD

P3 P2 P1 P0

Q3 Q2 Q1 Q0

Lower Order Counter

CLK(UP)

CLK(DOWN)

TCU

TCD

P3 P2 P1 P0

Q3 Q2 Q1 Q0

Higher Order Counter

PLPL

CLK(UP)

CLK(DOWN)

TCU

TCD

P3 P2 P1 P0

Q3 Q2 Q1 Q0

Lower Order Counter

CLK(UP)

CLK(DOWN)

TCU

TCD

P3 P2 P1 P0

Q3 Q2 Q1 Q0

Higher Order Counter

PLPL

(a)

(b)

Figure 11.20 Cascading binary counters.

and the process continues. If it is desired to build a multistage DOWN counter, all counters are wired
as DOWN counters, the clock is applied to the clock input of the lowest-order counter and the terminal
count DOWN (TCD), also called the borrow-out (Bo�, of the lowest-order counter is applied to the
clock input of the next higher counter stage. The process continues in the same fashion, with the TCD
output of the second stage feeding the clock input of the third stage and so on. The modulus of the
multistage counter arrangement equals the product of the moduli of individual stages. Figures 11.20(a)
and (b) respectively show two-stage arrangements of four-bit synchronous UP and DOWN counters
respectively.

11.10.2 Cascading BCD Counters

BCD counters are used when the application involves the counting of pulses and the result of counting
is to be displayed in decimal. A single-stage BCD counter counts from 0000 (decimal equivalent
‘0’) to 1001 (decimal equivalent ‘9’) and thus is capable of counting up to a maximum of nine
pulses. The output in a BCD counter is in binary coded decimal (BCD) form. The BCD output needs

436 Digital Electronics

BCD
Counter

Clk

D C B A

1000's Counter

BCD
Counter

Clk

D C B A

100's Counter

BCD
Counter

Clk

D C B A

10's Counter

BCD
Counter

Clk

D C B A

1's Counter

Input

Figure 11.21 Cascading BCD counters.

to be decoded appropriately before it can be displayed. Decoding a counter has been discussed in
the previous section. Coming back to the question of counting pulses, more than one BCD counter
stage needs to be used in a cascade arrangement in order to be able to count up to a larger number
of pulses. The number of BCD counter stages to be used equals the number of decimal digits in
the maximum number of pulses we want to count up to. With a maximum count of 9999 or 3843,
both would require a four-stage BCD counter arrangement with each stage representing one decimal
digit.

Figure 11.21 shows a cascade arrangement of four BCD counter stages. The arrangement works as
follows. Initially, all four counters are in the all 0s state. The counter representing the decimal digit of
1’s place is clocked by the pulsed signal that needs to be counted. The successive flip-flops are clocked
by the MSB of the immediately previous counter stage. The first nine pulses take 1’s place counter to
1001. The tenth pulse resets it to 0000, and ‘1’ to ‘0’ transition at the MSB of 1’s place counter clocks
10’s place counter. 10’s place counter gets clocked on every tenth input clock pulse. On the hundredth
clock pulse, the MSB of 10’s counter makes a ‘1’ to ‘0’ transition which clocks 100’s place counter.
This counter gets clocked on every successive hundredth input clock pulse. On the thousandth input
clock pulse, the MSB of 100’s counter makes ‘l’ to ‘0’ transition for the first time and clocks 1000’s
place counter. This counter is clocked thereafter on every successive thousandth input clock pulse.
With this background, we can always tell the output state of the cascade arrangement. For example,
immediately after the 7364th input clock pulse, the state of 1000’s, 100’s, 10’s and 1’s BCD counters
would respectively be 0111, 0011, 0110 and 0100.

Example 11.6

Figure 11.22 shows a cascade arrangement of two 74190s. Both the UP/DOWN counters are wired
as UP counters. What will be the logic status of outputs designated as A, B, C, D, E, F, G and H after
the 34th clock pulse?

Solution
The cascade arrangement basically constitutes a two-stage BCD counter that can count from 0 to 99.
The counter shown on the left forms 1’s place counter, while the one on the right is 10’s place counter.
The ripple clock (RC� output internally enabled by the terminal count � TC� clocks 10’s place counter
on the tenth clock pulse and thereafter on every successive tenth clock pulse. At the end of the 34th
clock pulse, 1’s counter stores the binary equivalent of ‘4’ and 10’s counter stores the binary equivalent
of ‘3’. Therefore, the logic status of A, B, C, D, E, F , G and H outputs will be 0, 0, 1, 0, 1,1, 0 and
0 respectively.

Counters and Registers 437

Q3 Q2 Q1 Q0

U/D

CE

GND

CP

RC

TC

74190

VCC PLP

ABCD

Q3 Q2 Q1 Q0

U/D

CE

GND

CP

RC

TC

74190

VCC

+VCC

PLP

H G F E

Figure 11.22 Cascade arrangement of two 74190s (example 11.6).

Q3 Q2 Q1 Q0

Clk
(Down)

Clk
(Up)

74193

1 MR
or

Clear

P3 P2 P1 P0PL

TCD
or

BO

0 1 01

Figure 11.23 Presettable counter (example 11.7).

Example 11.7

Determine the modulus of the presettable counter shown in Fig. 11.23. If the counter were initially in
the 0110 state, what would be the state of the counter immediately after the eighth clock pulse be?

Solution
• This presettable counter has been wired as a DOWN counter.
• The preset data input is 0110.
• Therefore, the modulus of the counter is 6 (the decimal equivalent of 0110).
• Now, the counter is initially in the 0110 state.
• Therefore, at the end of the sixth clock pulse, immediately after the leading edge of the sixth clock

pulse, the counter will be in the 0000 state.

438 Digital Electronics

• A HIGH-to-LOW transition at the TCD output,coinciding with the trailing edge of the sixth clock
pulse, loads 0110 to the counter output.

• Therefore, immediately after the leading edge of the eighth clock pulse, the counter will be in the
0100 state.

11.11 Designing Counters with Arbitrary Sequences
So far we have discussed different types of synchronous and asynchronous counters. A large variety
of synchronous and asynchronous counters are available in IC form, and some of these have been
mentioned and discussed in the previous sections. The counters discussed hitherto count in either the
normal binary sequence with a modulus of 2N or with slightly altered binary sequences where one or
more of the states are skipped. The latter type of counter has a modulus of less than 2N , N being the
number of flip-flops used. Nevertheless, even these counters have a sequence that is either upwards or
downwards and not arbitrary. There are applications where a counter is required to follow a sequence
that is arbitrary and not binary. As an example, an MOD-10 counter may be required to follow the
sequence 0000, 0010, 0101, 0001, 0111, 0011, 0100, 1010, 1000, 1111, 0000, 0010 and so on. In such
cases, the simple and seemingly obvious feedback arrangement with a single NAND gate discussed
in the earlier sections of this chapter for designing counters with a modulus of less than 2N cannot be
used.

There are several techniques for designing counters that follow a given arbitrary sequence. In the
present section, we will discuss in detail a commonly used technique for designing synchronous
counters using J-K flip-flops or D flip-flops. The design of the counters basically involves designing
a suitable combinational logic circuit that takes its inputs from the normal and complemented outputs
of the flip-flops used and decodes the different states of the counter to generate the correct logic states
for the inputs of the flip-flops such as J , K, D, etc. But before we illustrate the design procedure with
the help of an example, we will explain what we mean by the excitation table of a flip-flop and the
state transition diagram of a counter. An excitation table in fact can be drawn for any sequential logic
circuit, but, once we understand what it is in the case of a flip-flop, which is the basic building block
of sequential logic, it would be much easier for us to draw the same for more complex sequential
circuits such as counters, etc.

11.11.1 Excitation Table of a Flip-Flop

The excitation table is similar to the characteristic table that we discussed in the previous chapter on
flip-flops. The excitation table lists the present state, the desired next state and the flip-flop inputs
(J , K, D, etc.) required to achieve that. The same for a J-K flip-flop and a D flip-flop are shown in
Tables 11.7 and 11.8 respectively. Referring to Table 11.7, if the output is in the logic ‘0’ state and it
is desired that it goes to the logic ‘1’ state on occurrence of the clock pulse, the J input must be in
the logic ‘1’ state and the K input can be either in the logic ‘0’ or logic ‘1’ state. This is true as, for
a ‘0’ to ‘1’ transition, there are two possible input conditions that can achieve this. These are J = 1,
K = 0 (SET mode) and J = K = 1 (toggle mode), which further leads to J = 1� K = X (either 0
or 1). The other entries of the excitation table can be explained on similar lines.

In the case of a D flip-flop, the D input is the same as the logic status of the desired next state. This
is true as, in the case of a D flip-flop, the D input is transferred to the output on the occurrence of the
clock pulse, irrespective of the present logic status of the Q output.

Counters and Registers 439

Table 11.7 Excitation table of a J-K flip-flop.

Present Next state J K
state (Qn) (Qn+1)

0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Table 11.8 Excitation table of a D flip-flop.

Present Next state D
state (Qn) (Qn+1)

0 0 0
0 1 1
1 0 0
1 1 1

11.11.2 State Transition Diagram

The state transition diagram is a graphical representation of different states of a given sequential
circuit and the sequence in which these states occur in response to a clock input. Different states are
represented by circles, and the arrows joining them indicate the sequence in which different states
occur. As an example, Fig. 11.24 shows the state transition diagram of an MOD-8 binary counter.

11.11.3 Design Procedure

We will illustrate the design procedure with the help of an example. We will do this for an MOD-6
synchronous counter design, which follows the count sequence 000, 010, 011, 001, 100, 110, 000,
010, � � � :

000 001

101 100

111

110

010

011

Figure 11.24 State transition diagram for an MOD-8 binary counter.

440 Digital Electronics

1. Determine the number of flip-flops required for the purpose. Identify the undesired states. In the
present case, the number of flip-flops required is 3 and the undesired states are 101 and 111

2. Draw the state transition diagram showing all possible states including the ones that are not desired.
The undesired states should be depicted to be transiting to any of the desired states. We have chosen
the 000 state for this purpose. It is important to include the undesired states to ensure that, if the
counter accidentally gets into any of these undesired states owing to noise or power-up, the counter
will go to a desired state to resume the correct sequence on application of the next clock pulse.
Figure 11.25 shows the state transition diagram

110

100

010

011

000

001

101 111

Figure 11.25 State transition diagram.

3. Draw the excitation table for the counter, listing the present states, the next states corresponding
to the present states and the required logic status of the flip-flop inputs (the J and K inputs if the
counter is to be implemented with J-K flip-flops). The excitation table is shown in Table 11.9

Table 11.9 Excitation table.

Present Next Inputs
state state

C B A C B A JC KC JB KB JA KA

0 0 0 0 1 0 0 X 1 X 0 X
0 0 1 1 0 0 1 X 0 X X 1
0 1 0 0 1 1 0 X X 0 1 X
0 1 1 0 0 1 0 X X 1 X 0
1 0 0 1 1 0 X 0 1 X 0 X
1 0 1 0 0 0 X 1 0 X X 1
1 1 0 0 0 0 X 1 X 1 0 X
1 1 1 0 0 0 X 1 X 1 X 1

Counters and Registers 441

The circuit excitation table can be drawn very easily once we know the excitation table of the
flip-flop to be used for building the counter. For instance, let us look at the first row of the excitation
table (Table 11.9). The counter is in the 000 state and is to go to 010 on application of a clock
pulse. That is, the normal outputs of C, B and A flip-flops have to undergo ‘0’ to ‘0’, ‘0’ to ‘1’ and
‘0’ to ‘0’ transitions respectively. Referring to the excitation table of a J-K flip-flop, the desired
transitions can be realized if the logic status of JA, KA, JB, KB, JC and KC is as shown in the
excitation table.

4. The next step is to design the logic circuits for generating JA, KA, JB, KB, JC and KC inputs from
available A, A, B, B, C and C outputs. This can be done by drawing Karnaugh maps for each one
of the inputs, minimizing them and then implementing the minimized Boolean expressions. The
Karnaugh maps for JA, KA, JB, KB, JC and KC are respectively shown in Figs 11.26(a), (b), (c),
(d), (e) and (f). The minimized Boolean expressions are as follows:

X

A

BC

1

X

X

X

A

BC

BC

BC

(a)

X

A

BC

1

X

X

X

A

BC

BC

BC

(b)

1

1

A

BC

X

X

A

BC

BC

BC

(c)

1

1

X

X

A

BC

X

A

BC

BC

BC

(d)

1

1

X

X

X

1

X

A

BC 1

X

X

A

BC

BC

BC

(e)

X

A

BC

X

X

A

BC

BC

BC

(f)

1

1

X

X

1

Figure 11.26 Karnaugh maps.

442 Digital Electronics

JA = B�C (11.2)

KA = B + C (11.3)

JB = A (11.4)

KB = A + C (11.5)

JC = A�B (11.6)

KC = A + B (11.7)

The above expressions can now be used to implement combinational circuits to generate JA, KA,
JB, KB, JC and KC inputs. Figure 11.27 shows the complete counter circuit

C

Clk
FF-C

JC

KCC

Clk
FF-B

JB

KBB

B

Clk
FF-A

JA

KAA

A

Clock-In

Figure 11.27 Counter with an arbitrary sequence.

The design procedure illustrated above can be used to design a synchronous counter for any given
count sequence with the condition that no state occurs more than once in one complete cycle of the
given count sequence as the design cannot handle a situation where a particular present state has more
than one future state.

Counters and Registers 443

Table 11.10 Example 11.8.

Present state
(Qn)

Next state
(Qn+1)

Inputs

X1 X2

0 0 0 0
0 1 0 1
1 0 1 X
1 1 X 1

X=don’t care condition.

Example 11.8

Table 11.10 gives the excitation table of a certain flip-flop having X1 and X2 as its inputs. Draw the
circuit excitation table of an MOD-5 synchronous counter using this flip-flop for the count sequence
000, 001, 011, 101, 110, 000, � � � If the present state is an undesired one, it should transit to 110 on
application of a clock pulse. Design the counter circuit using the flip-flop whose excitation circuit is
given in Table 11.10.

Solution
• The circuit excitation table is shown in Table 11.11.
• The number of flip-flops required is 3.
• X1 (A) and X2 (A) are the inputs of flip-flop A, which is also the LSB flip-flop.
• X1 (B) and X2 (B) represent the inputs to flip-flop B.
• X1 (C) and X2 (C) are the inputs to flip-flop C, which is also the MSB flip-flop.
• The next step is to draw Karnaugh maps, one each for different inputs to the three flip-flops.
• Figures 11.28(a) to (f) show the Karnaugh maps for X1 (A), X2 (A), X1 (B), X2 (B), X1 (C) and X2

(C) respectively.
• The minimized expressions are as follows:

X1�A� = A (11.8)

X2�A� = A + B�C (11.9)

X1�B� = B (11.10)

X2�B� = A + B + C (11.11)

X1�C� = C (11.12)

X2�C� = B + C (11.13)

• Figure 11.29 shows the circuit implementation.

Example 11.9

Design a synchronous counter that counts as 000, 010, 101, 110, 000, 010, � � � Ensure that the unused
states of 001, 011, 100 and 111 go to 000 on the next clock pulse. Use J-K flip-flops. What will the
counter hardware look like if the unused states are to be considered as ‘don’t care’s.

444 Digital Electronics

Table 11.11 Example 11.8.

Present state Next state Inputs

C B A C B A X1(A) X2(A) X1(B) X2(B) X1(C) X2(C)

0 0 0 0 0 1 0 1 0 0 0 0
0 0 1 0 1 1 X 1 0 1 0 0
0 1 0 1 1 0 0 0 X 1 0 1
0 1 1 1 0 1 X 1 1 X 0 1
1 0 0 1 1 0 0 0 0 1 X 1
1 0 1 1 1 0 1 X 0 1 X 1
1 1 0 0 0 0 0 0 1 X 1 X
1 1 1 1 1 0 1 X X 1 X 1

X=don’t care condition.

A

BC X

A

BC

BC

BC

(a)

1

1

X

A

BC

X

A

BC

BC

BC

1

1

X

1

A

BC

1

A

BC

BC

BC

(c)

1

X

A

BC

X

A

BC

BC

BC

(d)

1

1

1

1

X

1

(b)

A

BC

A

BC

BC

BC

(e)

1 X

XX

A

BC

X

A

BC

BC

BC

(f)

1

1

1

1

1

X

Figure 11.28 Karnaugh maps (example 11.8).

Counters and Registers 445

C

Clk
FF-C

X (C)1

C

Clock

B

Clk
FF-B

B

A

Clk
FF-A

AX (C)2

X (B)1

X (B)2

X (A)1

X (A)2

Figure 11.29 Counter circuit (example 11.8).

Table 11.12 Example 11.9.

Present state Next state Inputs

C B A C B A JA KA JB KB JC KC

0 0 0 0 1 0 0 X 1 X 0 X
0 0 1 0 0 0 X 1 0 X 0 X
0 1 0 1 0 1 1 X X 1 1 X
0 1 1 0 0 0 X 1 X 1 0 X
1 0 0 0 0 0 0 X 0 X X 1
1 0 1 1 1 0 X 1 1 X X 0
1 1 0 0 0 0 0 X X 1 X 1
1 1 1 0 0 0 X 1 X 1 X 1

Solution
• The number of flip-flops required is three.
• Table 11.12 shows the desired circuit excitation table.
• The Karnaugh maps for JA, KA, JB, KB, JC and KC are shown in Figs 11.30(a) to (f) respectively�
• The simplified Boolean expressions are as follows:

JA = B�C (11.14)

KA = 1 (11.15)

446 Digital Electronics

X

A

CB

1 X

X

X

A

CB

CB

CB

(a)

X

A

1

X

X

X

A

(b)

1

1

A

X

X

A

(c)

1

X

X

1 1

X

A

1

X

A

(d)

1

1

1

X

X

A

X

X

A

(e)

1

X

X

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

X

A

1

X

X

X

A

(f)

1

CB

CB

CB

CB

1

Figure 11.30 Karnaugh maps (example 11.9).

JB = A�C + A�C (11.16)

KB = 1 (11.17)

JC = A�B (11.18)

KC = A + B (11.19)

• The hardware implementation is shown in Fig. 11.31.
• In the case where the unused inputs are considered as ‘don’t cares’, the circuit excitation table is

modified to that shown in Table 11.13.
• Modified Karnaugh maps are shown in Fig. 11.32.
• The minimized Boolean expressions are derived from the Karnaugh maps of Figs 11.32(a) to (f).
• Minimized expressions for JA, KA, JB, KB, JC and KC respectively are as follows:

JA = B�C (11.20)

KA = 1 (11.21)

JB = 1 (11.22)

KB = 1 (11.23)

JC = B (11.24)

KC = A (11.25)

• Figure 11.33 shows the hardware implementation.

Counters and Registers 447

Figure 11.31 Hardware implementation of the counter circuit (example 11.9).

Table 11.13 Example 11.9.

Present state Next state Inputs

C B A C B A JA KA JB KB JC KC

0 0 0 0 1 0 0 X 1 X 0 X
0 0 1 X X X X X X X X X
0 1 0 1 0 1 1 X X 1 1 X
0 1 1 X X X X X X X X X
1 0 0 X X X X X X X X X
1 0 1 1 1 0 X 1 1 X X 0
1 1 0 0 0 0 0 X X 1 X 1
1 1 1 X X X X X X X X X

11.12 Shift Register
A shift register is a digital device used for storage and transfer of data. The data to be stored could be
the data appearing at the output of an encoding matrix before they are fed to the main digital system
for processing or they might be the data present at the output of a microprocessor before they are fed

448 Digital Electronics

X

A

CB

1 X

X

X

A

CB

CB

CB

(a)

X

A

X

X

X

A

(b)

1

X

A

X

A

(d)

1

1

X

X

A

X

A

(e)

1

X

X

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

X

A

X

X

X

A

(f)

CB

CB

CB

CB

X

X

X

X

A

X

X

X

A

(b)

1

CB

CB

CB

CB

X

X

X

1

X

X X

X

X

X

1

X

Figure 11.32 Modified Karnaugh maps (example 11.9).

Figure 11.33 Hardware implementation of the counter circuit (example 11.9).

Counters and Registers 449

to the driver circuitry of the output devices. The shift register thus forms an important link between the main
digital system and the input/output channels. The shift registers can also be configured to construct some
special types of counter that can be used to perform a number of arithmetic operations such as subtraction,
multiplication, division, complementation, etc. The basic building block in all shift registers is the flip-
flop, mainly a D-type flip-flop. Although in many of the commercial shift register ICs their internal circuit
diagram might indicate the use of R-S flip-flops, a careful examination will reveal that these R-S flip-flops
have been wired as D flip-flops only.

The storage capacity of a shift register equals the total number of bits of digital data it can store,
which in turn depends upon the number of flip-flops used to construct the shift register. Since each
flip-flop can store one bit of data, the storage capacity of the shift register equals the number of
flip-flops used. As an example, the internal architecture of an eight-bit shift register will have a cascade
arrangement of eight flip-flops.

Based on the method used to load data onto and read data from shift registers, they are classified
as serial-in serial-out (SISO) shift registers, serial-in parallel-out (SIPO) shift registers, parallel-in
serial-out (PISO) shift registers and parallel-in parallel-out (PIPO) shift registers.

Figure 11.34 shows a circuit representation of the above-mentioned four types of shift register.

11.12.1 Serial-In Serial-Out Shift Register

Figure 11.35 shows the basic four-bit serial-in serial-out shift register implemented using D flip-flops.
The circuit functions as follows. A reset applied to the CLEAR input of all the flip-flops resets their Q
outputs to 0s. Refer to the timing waveforms of Fig. 11.36. The waveforms shown include the clock
pulse train, the waveform representing the data to be loaded onto the shift register and the Q outputs
of different flip-flops.

The flip-flops shown respond to the LOW-to-HIGH transition of the clock pulses as indicated by
their logic symbols. During the first clock transition, the QA output goes from logic ‘0’ to logic ‘1’.

Serial-In
Serial-Out

In

Clock
Out Serial-In

Parallel-Out

In

Clock

Out

Parallel-In
Serial-Out

In

Out Parallel-In
Parallel-Out

In

Out

ClockClock

Figure 11.34 Circuit representation of shift registers.

450 Digital Electronics

QAD

CL

QBD

CL

QCD

CL

Clk

QDD

CL

Data In

Clock

Clear

Data Out

Clk Clk Clk

Figure 11.35 Serial-in, serial-out shift register.

Clock

Clear

Data Input
1 0

Q -OutputA

0 1

Q -OutputB

Q -OutputC

Q -OutputD

Figure 11.36 Timing waveforms for the shift register of Fig. 11.35.

The outputs of the other three flip-flops remain in the logic ‘0’ state as their D inputs were in the logic
‘0’ state at the time of clock transition. During the second clock transition, the QA output goes from
logic ‘1’ to logic ‘0’ and the QB output goes from logic ‘0’ to logic ‘1’, again in accordance with the
logic status of the D inputs at the time of relevant clock transition.

Thus, we have seen that a logic ‘1’ that was present at the data input prior to the occurrence of the
first clock transition has reached the QB output at the end of two clock transitions. This bit will reach
the QD output at the end of four clock transitions. In general, in a four-bit shift register of the type

Counters and Registers 451

Table 11.14 Contents of four-bit serial-in serial-out shift register for the first eight clock cycles.

Clock QA QB QC QD

Initial contents 0 0 0 0
After first clock transition 1 0 0 0
After second clock transition 0 1 0 0
After third clock transition 0 0 1 0
After fourth clock transition 1 0 0 1
After fifth clock transition 0 1 0 0
After sixth clock transition 0 0 1 0
After seventh clock transition 0 0 0 1
After eighth clock transition 0 0 0 0

shown in Fig. 11.35, a data bit present at the data input terminal at the time of the nth clock transition
reaches the QD output at the end of the (n+4)th clock transition. During the fifth and subsequent
clock transitions, data bits continue to shift to the right, and at the end of the eighth clock transition
the shift register is again reset to all 0s. Thus, in a four-bit serial-in serial-out shift register, it takes
four clock cycles to load the data bits and another four cycles to read the data bits out of the register.
The contents of the register for the first eight clock cycles are summarized in Table 11.14. We can see
that the register is loaded with the four-bit data in four clock cycles, and also that the stored four-bit
data are read out in the subsequent four clock cycles.

IC 7491 is a popular eight-bit serial-in serial-out shift register. Figure 11.37 shows its internal
functional diagram, which is a cascade arrangement of eight R-S flip-flops. Owing to the inverter
between the R and S inputs of the data input flip-flop, it is functionally the same as a D flip-flop.
The data to be loaded into the register serially can be applied either at A or B input of the NAND
gate. The other input is then kept in the logic HIGH state to enable the NAND gate. In that case, data
present at A or B get complemented as they appear at the NAND output. Another inversion provided
by the inverter, however, restores the original status so that for a logic ‘1’ at the data input there is a
logic ‘1’ at the SET input of the flip-flop and a logic ‘0’ at the RESET input of the flip-flop, and for
a logic ‘0’ at the data input there is a logic ‘0’ at the SET input and a logic ‘1’ at the RESET input
of the flip-flop. The NAND gate provides only a gating function, and, if it is not required, the two
inputs of the NAND can be shorted to have a single-line data input. The shift register responds to the
LOW-to-HIGH transitions of the clock pulses.

Q0S

R Q0

C

Q1S

R Q1

C

Q2S

R Q2

C

Q3S

R Q3

C

Q4S

R Q4

C

Q5S

R Q5

C

Q6S

R Q6

C

Q7S

R Q7

C

Clock

A
B

Figure 11.37 Logic diagram of IC 7491.

452 Digital Electronics

Q0D

CD

CP

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Clock

A
B

MR

D

CP

CD

D

CP

CD

D

CP

CD

D

CP

CD

D

CP

CD

D

CP

CD

Q7Q6Q5Q4

D

CP

CD

Q3Q2Q1Q0

Figure 11.38 Logic diagram of IC 74164.

11.12.2 Serial-In Parallel-Out Shift Register

A serial-in parallel-out shift register is architecturally identical to a serial-in serial-out shift register
except that in the case of the former all flip-flop outputs are also brought out on the IC terminals.
Figure 11.38 shows the logic diagram of a typical serial-in parallel-out shift register. In fact, the logic
diagram shown in Fig. 11.38 is that of IC 74164, a popular eight-bit serial-in parallel-out shift register.
The gated serial inputs A and B control the incoming serial data, as a logic LOW at either of the inputs
inhibits entry of new data and also resets the first flip-flop to the logic LOW level at the next clock
pulse. Logic HIGH at either of the inputs enables the other input, which then determines the state of
the first flip-flop.

Data at the serial inputs may be changed while the clock input is HIGH or LOW, and the
register responds to LOW-to-HIGH transition of the clock. Figure 11.39 shows the relevant timing
waveforms.

11.12.3 Parallel-In Serial-Out Shift Register

We will explain the operation of a parallel-in serial-out shift register with the help of the logic diagram
of a practical device available in IC form. Figure 11.40 shows the logic diagram of one such shift
register. The logic diagram is that of IC 74166, which is an eight-bit parallel/serial-in, serial-out shift
register belonging to the TTL family of devices.

The parallel-in or serial-in modes are controlled by a SHIFT/LOAD input. When the SHIFT/LOAD
input is held in the logic HIGH state, the serial data input AND gates are enabled and the circuit
behaves like a serial-in serial-out shift register. When the SHIFT/LOAD input is held in the logic LOW
state, parallel data input AND gates are enabled and data are loaded in parallel, in synchronism with
the next clock pulse. Clocking is accomplished on the LOW-to-HIGH transition of the clock pulse via
a two-input NOR gate. Holding one of the inputs of the NOR gate in the logic HIGH state inhibits
the clock applied to the other input. Holding an input in the logic LOW state enables the clock to be
applied to the other input. An active LOW CLEAR input overrides all the inputs, including the clock,
and resets all flip-flops to the logic ‘0’ state. The timing waveforms shown in Fig. 11.41 explain both
serial-in, serial-out as well as parallel-in, serial-out operations.

Counters and Registers 453

Figure 11.39 Timing waveforms of IC 74164.

11.12.4 Parallel-In Parallel-Out Shift Register

The hardware of a parallel-in parallel-out shift register is similar to that of a parallel-in serial-out
shift register. If in a parallel-in serial-out shift register the outputs of different flip-flops are brought
out, it becomes a parallel-in parallel-out shift register. In fact, the logic diagram of a parallel-in
parallel-out shift register is similar to that of a parallel-in serial-out shift register. As an example, IC
74199 is an eight-bit parallel-in parallel-out shift register. Figure 11.42 shows its logic diagram. We
can see that the logic diagram of IC 74199 is similar to that of IC 74166 mentioned in the previous
section, except that in the case of the former the flip-flop outputs have been brought out on the IC
terminals.

454 Digital Electronics

Figure 11.40 Logic diagram of 74166.

Counters and Registers 455

Figure 11.41 Timing waveforms of IC 74166.

11.12.5 Bidirectional Shift Register

A bidirectional shift register allows shifting of data either to the left or to the right. This is made
possible with the inclusion of some gating logic having a control input. The control input allows
shifting of data either to the left or to the right, depending upon its logic status.

11.12.6 Universal Shift Register

A universal shift register can be made to function as any of the four types of register discussed in
previous sections. That is, it has serial/parallel data input and output capability, which means that it can
function as serial-in serial-out, serial-in parallel-out, parallel-in serial out and parallel-in parallel-out
shift registers.

IC 74194 is a common four-bit bidirectional universal shift register. Figure 11.43 shows the logic
diagram of Ic 74194. the device offers four modes of operation, namely (a) inhibit clock, (b) shift
right, (c) shift left and (d) parallel load. Clocking of the device is inhibited when both the mode control
inputs S1 and S0 are in the logic LOW state. shift right and shift left operations are accomplished

456 Digital Electronics

Figure 11.42 Logic diagram of IC 74199.

F
ig

ur
e

11
.4

3
L

og
ic

di
ag

ra
m

of
IC

74
19

4.

458 Digital Electronics

synchronously with LOW-to-HIGH transition of the clock with S1 LOW and S0 HIGH (for shift
right) and S1 HIGH and S0 LOW (for shift left). Serial data are entered in the case of shift right and
shift left operations at the corresponding data input terminals. Parallel loading is also accomplished
synchronously with LOW-to-HIGH clock transitions by applying four bits of data and then driving
the mode control inputs S1 and S0 to the logic HIGH state. Data are loaded into corresponding flip-
flops and appear at the outputs with LOW-to-HIGH clock transition. Serial data flow is inhibited
during parallel loading. Different modes of operation are apparent in the timing waveforms of
Fig. 11.44.

Figure 11.44 Timing waveforms of IC 74194.

Counters and Registers 459

11.13 Shift Register Counters
We have seen that both counters and shift registers are some kinds of cascade arrangement of
flip-flops. A shift register, unlike a counter, has no specified sequence of states. However, if the
serial output of the shift register is fed back to the serial input, we do get a circuit that exhibits a
specified sequence of states. The resulting circuits are known as shift register counters. Depending
upon the nature of the feedback, we have two types of shift register counter, namely the ring counter
and the shift counter, also called the Johnson counter. These are briefly described in the following
paragraphs.

11.13.1 Ring Counter

A ring counter is obtained from a shift register by directly feeding back the true output of the output
flip-flop to the data input terminal of the input flip-flop. If D flip-flops are being used to construct
the shift register, the ring counter, also called a circulating register, can be constructed by feeding
back the Q output of the output flip-flop back to the D input of the input flip-flop. If J-K flip-flops
are being used, the Q and Q outputs of the output flip-flop are respectively fed back to the J and K
inputs of the input flip-flop. Figure 11.45 shows the logic diagram of a four-bit ring counter. Let us
assume that flip-flop FF0 is initially set to the logic ‘1’ state and all other flip-flops are reset to the
logic ‘0’ state. The counter output is therefore 1000. With the first clock pulse, this ‘1’ gets shifted to
the second flip-flop output and the counter output becomes 0100. Similarly, with the second and third
clock pulses, the counter output will become 0010 and 0001. With the fourth clock pulse, the counter
output will again become 1000. The count cycle repeats in the subsequent clock pulses. Circulating
registers of this type find wide application in the control section of microprocessor-based systems
where one event should follow the other. The timing waveforms for the circulating register of Figure
11.45, as shown in Fig. 11.46, further illustrate their utility as a control element in a digital system to
generate control pulses that must occur one after the other sequentially.

Q0

FF0

D

CK

Q1

FF1

D

CK

Q2

FF2

D

CK

Q3

FF3

D

CK

Q0 Q1 Q2 Q3

Figure 11.45 Four-bit ring counter.

460 Digital Electronics

Clock

Q -Output0

Q -Output1

Q -Output2

Q -Output3

Figure 11.46 Timing waveforms of the four-bit ring counter.

11.13.2 Shift Counter

A shift counter on the other hand is constructed by having an inverse feedback in a shift register. For
instance, if we connect the Q output of the output flip-flop back to the K input of the input flip-flop
and the Q output of the output flip-flop to the J input of the input flip-flop in a serial shift register,
the result is a shift counter, also called a Johnson counter. If the shift register employs D flip-flops,
the Q output of the output flip-flop is fed back to the D input of the input flip-flop. If R-S flip-flops
are used, the Q output goes to the R input and the Q output is connected to the S input. Figure 11.47
shows the logic diagram of a basic four-bit shift counter.

Let us assume that the counter is initially reset to all 0s. With the first clock cycle, the outputs will
become 1000. With the second, third and fourth clock cycles, the outputs will respectively be 1100,
1110 and 1111. The fifth clock cycle will change the counter output to 0111. The sixth, seventh and
eighth clock pulses successively change the outputs to 0011, 0001 and 0000. Thus, one count cycle

Q0

FF0

J

CK

Q0K

Q1

FF1

J

CK

Q1K

Q2

FF2

J

CK

Q2K

Q3

FF3

J

CK

Q3K

Clock

Figure 11.47 Four-bit shift counter.

Counters and Registers 461

Clock-Input

Q -Output0

Q -Output1

Q -Output2

Q -Output3

Figure 11.48 Timing waveforms of the shift counter.

is completed in eight cycles. Figure 11.48 shows the timing waveforms. Different output waveforms
are identical except for the fact that they are shifted from the immediately preceding one by one clock
cycle. Also, the time period of each of these waveforms is 8 times the period of the clock waveform.
That is, this shift counter behaves as a divide-by-8 circuit.

In general, a shift counter comprising n flip-flops acts as a divide-by-2n circuit. Shift counters can
be used very conveniently to construct counters having a modulus other than the integral power of 2.

Example 11.10

Refer to Fig. 11.49, which shows an application circuit of eight-bit serial-in serial-out shift register
type IC 7491 along with the waveform applied at the shorted A and B inputs:

(a) What will be the data bit present at the output at the end of the eleventh LOW-to-HIGH transition
of the clock waveform?

(b) If there is a logic ‘1’ at the end of the nth LOW-to-HIGH clock transition at the Q3 output, what
will the Q5 output at the end of the (n + 2)th transition be?

Solution
(a) At the end of the eighth LOW-to-HIGH clock transition, the data bits loaded into the register

will be 10110010, with the ‘0’ on the extreme right appearing at the Q7 output (refer to the logic
diagram of IC 7491 shown in Fig. 11.37). The ninth clock transition will shift this ‘0’ out of the
register, and the next adjacent bit (that is, ‘1’) will take its place on the Q7 output. Each subsequent
clock pulse will shift the bits one step towards the right, with the result that at the end of the
eleventh clock transition the Q7 output will be a logic ‘0’.

(b) It will be a logic ‘1’ only. The Q3 output will be shifted two bit positions to the right by two clock
transitions.

462 Digital Electronics

7491

A

B

CP
9

11

12

5
VCC

GND

13 Serial
Out

+VCC

10

Figure 11.49 Example 11.10.

Example 11.11

Determine the number of flip-flops required to construct (a) a MOD-10 ring counter and (b) a MOD-10
Johnson counter. Also, write the count sequence in the two cases.

Solution
(a) The modulus of a ring counter is the same as the number of bits (or flip-flops). Therefore, the

number of flip-flops required=10. The count sequence is 1000000000, 0100000000, 0010000000,
0001000000, 0000100000, 0000010000, 0000001000, 0000000100, 0000000010, 0000000001 and
back to 1000000000.

(b) The modulus of a Johnson counter is twice the number of flip-flops. Therefore, the number of
flip-flops=5. The count sequence is 00000, 10000, 11000, 11100, 11110, 11111, 01111, 00111,
00011, 00001 and back to 00000.

Example 11.12

Refer to the logic circuit of Fig. 11.50. Determine the modulus of this counter and write its counting
sequence.

Solution
The LSB of the five-bit ring counter feeds the clock input of the J-K flip-flop that has been wired as
a toggle flip-flop. The ring counter has a modulus of 5, and the J-K flip-flop works like a divide-by-2
circuit. The modulus of the counter circuit obtained by the cascade arrangement of the two is therefore
10. The counting sequence of this arrangement is given in Table 11.15.

Counters and Registers 463

A B C D E

5-Bit
Ring CounterCP

CP JK
Flip Flop

F

1

F

Clock

A B C D E

J

K

LSBMSB

Figure 11.50 Example 11.12.

Table 11.15 Example 11.11.

Clock pulse Outputs

A B C D E F

1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 1 0 0 0 0 1
7 0 1 0 0 0 1
8 0 0 1 0 0 1
9 0 0 0 1 0 1

10 0 0 0 0 1 1

11 1 0 0 0 0 0

It is very simple to write the count sequence. Firstly, we write the first 10 states of the ring counter
output (designated by A, B, C, D and E�. The logic status of F can be written by examining the logic
status of E. F toggles whenever E undergoes ‘1’ to ‘0’ transition.

Example 11.13

Refer to the logic circuit arrangement of Fig. 11.51 built around an eight-bit serial-in/parallel-out
shift register, type number 74164. A and B are the data inputs. The serial data feeding the register
are obtained by an ANDing operation of A and B inputs inside the IC. MR is an active LOW master
reset. Write the logic status of register outputs for the first eight clock pulses. Q0 represents the first
flip-flop in this serial shift register.

464 Digital Electronics

74164

CP
Clock

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

A

B
'1'

Figure 11.51 Example 11.13.

Solution
Initially, all outputs are in the logic ‘0’ state. Since A = B = 1, the serial input to the shift register
is a logic ‘1’. The MR input is initially inactive. For the first three clock pulses, the output status is
10000000, 11000000 and 11100000. With the fourth clock pulse, the output tends to go to 11110000, but
it cannot be stable state as the NAND output goes from ‘1’ to ‘0’. This resets the register to 00000000.
Thus, the register transits from 11100000 to 00000000. With the fifth, sixth and seventh clock pulses,
the circuit goes through 10000000, 11000000 and 11100000. The eight clock pulse again resets it to
00000000.

11.14 IEEE/ANSI Symbology for Registers and Counters
We introduced IEEE/ANSI symbology for digital integrated circuits as contained in IEEE/ANSI
Standard 91-1984 in Section 4.22 of Chapter 4 on logic gates and related devices. A brief description
of salient features of this symbology and its particular significance to sequential logic devices such
as flip-flops, counters, registers, etc., was given, highlighting the use of dependency notation to
provide almost complete functional information of the device. In this section, we will illustrate
IEEE/ANSI symbology for counters and registers with the help of IEEE/ANSI symbols of some popular
devices.

11.14.1 Counters

As an illustration, we will consider IEEE/ANSI symbols of a decade counter, type number 7490, and
a presettable four-bit binary UP/DOWN counter, type number 74193. The IEEE/ANSI notation for IC
7490 and IC 74193 is shown in Figs 11.52(a) and (b) respectively.

The upper portion of the notation represents the common control block that affects all flip-flops
constituting the counter. The lower portion represents individual flip-flops. Before we interpret different
labels and inputs/outputs for the two counter ICs, we should know the following:

Counters and Registers 465

DIV2(14)
CKA

DIV5

3CT=1

3CT=4

CT
0

2

(9)

(8)

(11)

(12)
QA

QB

QC

QD

+

(2)

(3)

(6)

(7)

R0(1)

R0(2)

R9(1)

R9(2)

&

&

CTR

CT=0

Z3

(14)

(5)

(4)

(11)

(15)

(1)

(10)

(9)

(3)

(2)

(6)

(7)

[1]

[2]

[4]

[8]

3D QA

QB

QC

QD

(12)

(13)

CTRDIV 16

1CT = 15

2CT = 0

CO

BO

LOAD

DOWN

UP

CLR

(a) (b)

(1)
CKB +

D

C

B

A

2+

G1

1−

G2

C3

CT=0

Figure 11.52 IEEE/ANSI notation for (a) IC 7490 and (b) IC 74193.

1. Letter ‘C’ represents control dependency. Use of the letter ‘C’ in the label of a certain input means
that that particular input controls the entry of data into a storage element such as a flip-flop. The
storage element or elements that are controlled by this input are indicated by a digit used as a suffix
to the letter ‘C’. The same digit appears as a prefix in the labels of all those storage elements that
are controlled by this input.

2. Letter ‘G’ represents an AND dependency. The use of the letter ‘G’ followed by a digit in the label
of an input means that this input is internally ANDed with another input or output and that the input
or output will have the same digit as a prefix in its label.

3. Plus (+) and minus (−) signs in the labels indicate the count direction, with the former implying
an UP count sequence and the latter implying a DOWN count sequence. These signs are used with
clock inputs.

We will now interpret different inputs and outputs for the two counters. We will begin with IC
7490. Reset inputs R0 (1) and R0 (2) have an AND dependency, and when both of them are driven
to the logic HIGH state the counter is reset to all 0s. Reset inputs R9 (1) and R9 (2) also have an
AND dependency when both of them are driven to the logic HIGH state, the divide-by-2 portion of
the counter is reset to count ‘1’ (which is also the logic ‘1’ state for the flip-flop true output) and the
divide-by-5 portion of the counter is reset to count ‘4’ (which is the 100 state for the counter outputs).
If the two portions were used in cascade, the counter output would become 1001, which would mean
that the counter is reset to count ‘9’. Clock A (CKA) and clock B (CKB) inputs allow the two portions
of the counter to count in the upward sequence as indicated by the (+) sign.

We will now look at the IEEE/ANSI symbol of the other counter, that is, the counter IC type number
74193. Label CTR DIV16 means that IC 74193 is a divide-by-16 counter. Label CT=0 with master

466 Digital Electronics

reset (MR) input implies that the counter is reset to all 0s when the MR input is in the logic HIGH
state. Label C3 with parallel load (PL) input means that the data on parallel load inputs P0, P1, P2 and
P3 are loaded onto the corresponding flip-flops when the PL input is in the logic LOW state. We can
see the prefix 3 in the labels of the flip-flops. The CPU input has an AND dependency with the TCU
output and CPD input. In the case of the former, the TCU output goes to the logic LOW state when
the CPU is LOW and the count reaches ‘15’. In the case of the latter, the CPU input should be in
the logic HIGH state in order to allow the CPD to perform the count DOWN function. Similarly, the
CPD input has an AND dependency with the TCD output and CPU input. In the case of the former,
the TCD output goes to the logic LOW state when the CPD is LOW and the count reaches ‘0’. In
the case of the latter, the CPD input should be in the logic HIGH state in order to allow the CPU to
perform the count UP function.

11.14.2 Registers

As an illustration, we will consider IEEE/ANSI symbols of a serial-in serial-out shift register, type
number 7491, and a serial-in parallel-out shift register, type number 74164. Figures 11.53(a) and (b)
show the IEEE/ANSI notations for IC 7491 and IC 74164 respectively.

We will begin with shift register type number 7491. Label SRG8 stands for eight-bit shift register.
Label C1/→ with the clock input means that the relevant clock transition performs two functions.
Firstly, it loads data onto the data input as indicated by prefix ‘1’ with the D input. Secondly, it
performs a right shift operation. The A and B inputs have an AND dependency. When data are entered
through either of the two inputs, the other input must be held in the logic HIGH state to allow the data
bit to be loaded onto the data input terminal.

We will now consider shift register type number 74164. Label ‘R’ stands for reset operation.
Whenever the MR input is driven to the logic LOW state, the shift register is reset to all 0s. The rest
of the notations have already been explained in the case of register type number 7491.

11.15 Application-Relevant Information
Table 11.16 lists the commonly used IC counters and registers belonging to the TTL, CMOS and
ECL logic families. Application-relevant information on more popular type numbers is given in the
companion website. The information includes the pin configuration diagram, functional table and
timing waveforms in some cases.

Review Questions
1. Differentiate between:

(a) asynchronous and synchronous counters;
(b) UP, DOWN and UP/DOWN counters;
(c) presettable and clearable counters;
(d) BCD and decade counters.

2. Indicate the difference between the counting sequences of:

(a) a four-bit binary UP counter and a four-bit binary DOWN counter;
(b) a four-bit ring counter and a four-bit Johnson counter.

Counters and Registers 467

(9)
CLK C1/

SRG8

(11)
B

(12)
A

& 1D

(14)
QH

(13)
QH

(a)

(3)
QA

(1)
A

&

(9)

(8)
CLR

CLK

SRG8

(2)
B

1D

(5)
QC

(6)
QD

(10)
QE

(11)
QF

(12)
QG(13)

(4)
QB

QH

C1/

(b)

R

Figure 11.53 IEEE/ANSI notation for (a) IC 7491 and (b) IC 74164.

3. Briefly describe:

(a) how the architecture of an asynchronous UP counter differs from that of a DOWN counter;
(b) how the architecture of a ring counter differs from that of a shift counter.

4. Briefly explain why the maximum usable clock frequency of a ripple counter decreases as more
flip-flops are added to the counter to increase its MOD-number.

5. Why is the maximum usable clock frequency in the case of a synchronous counter independent of
the size of counter?

6. How can presettable counters be used to construct counters with variable modulus?

468 Digital Electronics

7. Indicate the type of shift register:

(a) into which a complete binary number can be loaded in one operation and then shifted out one
bit at a time;

(b) into which data can be entered only one bit at a time but have all data bits available as outputs;
(c) in which we have access to only the leftmost or rightmost flip-flop.

Table 11.16 Commonly used IC counters and registers belonging to the TTL, CMOS and ECL logic families.

Type Function Logic
number family

7490 Decade counter TTL
7491 Eight-bit shift register (serial-in/serial-out) TTL
7493 Four-bit binary counter TTL
74160 BCD decade counter with asynchronous CLEAR TTL
74161 Four-bit binary counter with asynchronous CLEAR TTL
74162 BCD decade counter with synchronous CLEAR TTL
74163 Four-bit binary counter with synchronous CLEAR TTL
74164 Eight-bit shift register (serial-in/parallel-out) TTL
74165 Eight-bit shift register (parallel-in/serial-out)
74166 Eight-bit shift register (parallel-in/serial-out) TTL
74178 Four-bit parallel access shift register TTL
74190 Presettable BCD decade UP/DOWN counter TTL
74191 Presettable four-bit binary UP/DOWN counter TTL
74192 Presettable BCD decade UP/DOWN counter TTL
74193 Presettable four-bit binary UP/DOWN counter TTL
74194 Four-bit right/left universal shift register TTL
74198 Eight-bit universal shift register (parallel-in/parallel-out bidirectional) TTL
74199 Eight-bit universal shift register (parallel-in/parallel-out bidirectional) TTL
74290 Decade counter TTL
74293 Four-bit binary counter TTL
74390 Dual decade counter TTL
74393 Dual four-bit binary counter TTL
4014 B Eight-bit static shift register CMOS

(synchronous parallel or serial-in/serial-out)
4015 B Dual four-bit static shift register CMOS

(serial-in/parallel-out)
4017 B Five-stage Johnson counter CMOS
4021 B Eght-bit static shift register CMOS

(asynchronous parallel-in or synchronous serial-in/serial-out)
4029 B Synchronous presettable four-bit UP/DOWN counter CMOS
4035 B Four-bit universal shift register CMOS
40160 B Decade counter with asynchronous CLEAR CMOS
40161 B Binary counter with asynchronous CLEAR CMOS
40162 B Decade counter CMOS
40163 B Binary Counter CMOS
40192 B Presettable BCD UP/DOWN counter CMOS
40193 B Presettable Binary UP/DOWN counter CMOS
4510 B Presettable UP/DOWN BCD counter CMOS

Counters and Registers 469

Table 11.16 (continued).

Type Function Logic
number family

4518 B Dual four-bit decade counter CMOS
4520B Dual four-bit binary counter CMOS
4522 B Four-bit BCD programmable divide-by-N counter CMOS
4722 B Programmable counter/timer CMOS
4731 B Quad 64-bit static shift register CMOS
MC 10136 Universal hexadecimal counter ECL
MC 10137 Universal decade counter ECL
MC 10141 Four-bit universal shift register ECL
MC 10154 Binary counter (four-bit) ECL
MC 10178 Four-bit binary counter ECL

8. What do you understand when the PRESET, CLEAR, UP/DOWN, master reset and parallel load
functions of a counter are designated as PR, CLR, U/D, MR and PL respectively?

9. What are counters with arbitrary count sequences? Briefly describe the procedure for designing a
counter with a given arbitrary count sequence.

10. Give at least one IC type number for:

(a) a four-bit binary ripple counter;
(b) a four-bit synchronous counter;
(c) an eight-bit serial-in serial-out shift register;
(d) a bidirectional universal shift register.

Problems
1. For the multistage counter arrangement of Fig.11.54, determine the frequency of the output signal.

125 Hz

4-bit
Binary
Ripple

Counter

5-Bit
Ring

Counter

BCD
Counter

5-bit
Shift

Counter

1MHz
f0

Figure 11.54 Problem 1.

2. A four-bit binary UP counter is initially in the 0000 state. Then the clock pulses are applied. Some
time later the clock pulses are removed, and at that the counter is observed to be in the 0011 state.
What is the minimum number of clock pulses that could possibly have occurred?

3

3. An eight-bit binary ripple UP counter with a modulus of 256 is holding the count 01111111. What
will be the count after 135 clock pulses be?

00000110

470 Digital Electronics

4. Three four-bit BCD decade counters are connected in cascade. The MSB output of the first counter
is fed to the clock input of the second counter, and the MSB output of the second counter is fed
to the clock input of the third counter. If the counters are negatively edge triggered and the input
clock frequency is 256 kHz, what is the frequency of the waveform available at the MSB of the
third counter?

256 Hz

5. The flip-flops used in a four-bit binary ripple counter have a HIGH-to-LOW and LOW-to-HIGH
propagation delay of 25 and 10 ns respectively. Determine the maximum usable clock frequency
of this counter.

10 MHz

6. Refer to the counter schematic shown in Fig. 11.55. Determine the count sequence of this counter.
000, 001, 010, 011, 100, 101, 110, 000, � � �

FF-C

C

C

J

KCl

Clk
FF-B

B

B

J

KCl

Clk
FF-A

A

A

J

KCl

Clk Clock

1

Figure 11.55 Problem 6.

7. Refer to the counter arrangement of Fig. 11.56. Determine the modulus of the counter and also the
frequency of the B output and the duty cycle of the C output if the clock frequency is 600 kHz.

3; 200 kHz; 0 %

8. A four-bit ring counter and a four-bit Johnson counter are in turn clocked by a 10 MHz clock
signal. Determine the frequency and duty cycle of the output of the output flip-flop in the two
cases.

Ring counter: 2.5 MHz, 25 %; Johnson counter: 1.25 MHz, 50 %

9. A 100-stage serial-in/serial-out shift register is clocked at 100 kHz. How long will the data be
delayed in passing through this register?

1 ms

Counters and Registers 471

C J

KCl

Clk

B J

KCl

Clk
FF-A

A

A

J

KCl

Clk Clock

1

Output

Figure 11.56 Problem 7.

10. Refer to the three-bit counter arrangement of Fig. 11.57. Determine its count sequence and also
determine whether the counter is self-starting. (A counter is self-starting if it automatically goes
to one of the desired states with subsequent clock pulse in case it lands itself accidentally into any
of the undesired states.)

000, 001, 010, 011, 100, 000, � � � ; not self starting

JC

C K

Clk

J
B

K

JA

KB

Clk

B A
1

C

Clk

Figure 11.57 Problem 10.

Further Reading
1. Langholz, G., Mott, J. L. and Kandel, A (1998) Foundations of Digital Logic Design, World Scientific Publ.

Co. Inc., NJ, USA.
2. Cook, N. P. (2003) Practical Digital Electronics, Prentice-Hall, NJ, USA.

472 Digital Electronics

3. Floyd, T. L. (2005) Digital Fundamentals, Prentice-Hall Inc., USA.
4. Tokheim, R. L. (1994) Schaum’s Outline Series of Digital Principles, McGraw-Hill Companies Inc., USA.
5. Tocci, R. J. (2006) Digital Systems – Principles and Applications, Prentice-Hall Inc., NJ, USA.
6. Malvino, A. P. and Leach, D. P. (1994) Digital Principles and Applications, McGraw-Hill Book Company,

USA.

12
Data Conversion Circuits – D/A
and A/D Converters

Digital-to-analogue (D/A) and analogue-to-digital (A/D) converters constitute an essential link when
digital devices interface with analogue devices, and vice versa. They are important building blocks
of any digital system, including both communication and noncommunication systems, besides having
other applications. A D/A converter is important not only because it is needed at the output of most
digital systems, where it converts a digital signal into an analogue voltage or current so that it can be fed
to a chart recorder, for instance, for measurement purposes, or a servo motor in a control application;
it is also important because it forms an indispensable part of the majority of A/D converter types. An
A/D converter, too, has numerous applications. When it comes to transmitting analogue data, it forms
an essential interface with a digital communication system where the analogue signal to be transmitted
is digitized at the sending end with an A/D converter. It is invariably used in all digital read-out
test and measuring equipment. Whether it is a digital multimeter or a digital storage oscilloscope or
even a pH meter, an A/D converter is an important and essential component of all of them. In this
chapter, we will discuss the operational fundamentals, the major performance specifications, along with
their significance, and different types and applications of digital-to-analogue and analogue-to-digital
converters, in addition to application-relevant information of some of the popular devices. A large
number of solved examples is also included to illustrate the concepts.

12.1 Digital-to-Analogue Converters
A D/A converter takes digital data at its input and converts them into analogue voltage or current that
is proportional to the weighted sum of digital inputs. In the following paragraphs it is briefly explained

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5

474 Digital Electronics

how different bits in the digital input data contribute a different quantum to the overall output analogue
voltage or current, and also that the LSB has the least and the MSB the highest weight.

12.1.1 Simple Resistive Divider Network for D/A Conversion

Simple resistive networks can be used to convert a digital input into an equivalent analogue output.
Figure 12.1 shows one such resistive network that can convert a three-bit digital input into an analogue
output. This network, however, can be extended further to enable it to perform digital-to-analogue
conversion of digital data with a larger number of bits. In the network of Fig. 12.1, if RL is much
larger than R� it can be proved with the help of simple network theorems that the output analogue
voltage is given by

VA = �V1/R�+ �V2/�R/2��+ �V3/�R/4��

�1/R�+ �1/�R/2��+ �1/�R/4��
(12.1)

= �V1/R�+ �2V2/R�+ �4V3/R�

�1/R�+ �2/R�+ �4/R�
(12.2)

= V1 +2V2 +4V3

7
(12.3)

which can be further expressed as

VA = V1 ×20 +V2 ×21 +V3 ×22

23 −1
(12.4)

The generalized expression of Equation (12.4) can be extended further to an n-bit D/A converter to
get the following expression:

VA = V1 ×20 +V2 ×21 +V3 ×22 + · · · +Vn ×2n−1

2n −1
(12.5)

In expression (12.5), if V1 = V2 = � � � = Vn = V , then a logic ‘1’ at the LSB position would contribute
V/(2n − 1) to the analogue output, and a logic ‘1’ in the next adjacent higher bit position would

R

V1

R/2

V2

R/4

V3

RL

VA

Figure 12.1 Simple resistive network for D/A conversion.

Data Conversion Circuits – D/A and A/D Converters 475

contribute 2V/(2n − 1) to the output. The contributions of successive higher bit positions in the case
of a logic ‘1’ would be 4V/(2n − 1), 8V/(2n − 1), 16V/(2n − 1) and so on. That is, the contribution of
any given bit position owing to the presence of a logic ‘1’ is twice the contribution of the adjacent
lower bit position and half that of the adjacent higher bit position. When all input bit positions have a
logic ‘1’, the analogue output is given by

VA = V�20 +21 +22 + · · · +2n−1�

2n −1
= V (12.6)

In the case of all inputs being in the logic ‘0’ state, VA = 0. Therefore, the analogue output varies from
0 to V volts as the digital input varies from an all 0s to an all 1s input.

12.1.2 Binary Ladder Network for D/A Conversion

The simple resistive divider network of Fig. 12.1 has two serious drawbacks. One, each resistor in
the network is of a different value. Since these networks use precision resistors, the added expense
becomes unattractive. Two, the resistor used for the most significant bit (MSB) is required to handle
a much larger current than the LSB resistor. For example, in a 10-bit network, the current through the
MSB resistor will be about 500 times the current through the LSB resistor.

To overcome these drawbacks, a second type of resistive network called the binary ladder (or R/2R
ladder) is used in practice. The binary ladder, too, is a resistive network that produces an analogue
output equal to the weighted sum of digital inputs. Figure 12.2 shows the binary ladder network for a
four-bit D/A converter. As is clear from the figure, the ladder is made up of only two different values
of resistor. This overcomes one of the drawbacks of the resistive divider network. It can be proved
with the help of simple mathematics that the analogue output voltage VA in the case of binary ladder
network of Fig. 12.2 is given by

VA = V1 ×20 +V2 ×21 +V3 ×22 +V4 ×23

24
(12.7)

In general, for an n-bit D/A converter using a binary ladder network

VA = V1 ×20 +V2 ×21 +V3 ×22 + · · · +Vn ×2n−1

2n
(12.8)

For V1 = V2 = V3 = · · · = Vn = V , VA = [(2n − 1)/2n]V . For V1 = V2 = V3 = · · · = Vn = 0, VA = 0.

V3V2

2R

V1

VA
R R R

V4

2R 2R 2R

2R

20 21 22 23

(MSB)(LSB)

Figure 12.2 Binary ladder network for D/A conversion.

476 Digital Electronics

VA

Input
Gates

n-bit
Digital Input

n-bit
Register

n-Lines

Level
Amplifiers

Binary
Ladder

n-Lines

n-Lines

Figure 12.3 Block schematic representation of a D/A converter.

The analogue output voltage in this case varies from 0 (for an all 0s input) to [(2n − 1)/2n]V (for an
all 1s input).

Also, in the case of a resistive divider network, the LSB contribution to the analogue output is
[1/(2n − 1)]V . This is also the minimum possible incremental change in the analogue output voltage.
The same in the case of a binary ladder network would be (1/2n�V .

A binary ladder network is the most widely used network for digital-to-analogue conversion, for
obvious reasons. Although actual D/A conversion takes place in this network, a practical D/A converter
device has additional circuitry such as a register for temporary storage of input digital data and level
amplifiers to ensure that the digital signals presented to the resistive network are all of the same level.
Figure 12.3 shows a block schematic representation of a complete n-bit D/A converter. D/A converters
of different sizes (eight-bit, 12-bit, 16-bit, etc.) are available in the form of integrated circuits.

12.2 D/A Converter Specifications
The major performance specifications of a D/A converter include resolution, accuracy, conversion
speed, dynamic range, nonlinearity (NL) and differential nonlinearity (DNL) and monotonocity.

12.2.1 Resolution

The resolution of a D/A converter is the number of states (2n� into which the full-scale range is
divided or resolved. Here, n is the number of bits in the input digital word. The higher the number
of bits, the better is the resolution. An eight-bit D/A converter has 255 resolvable levels. It is said to

Data Conversion Circuits – D/A and A/D Converters 477

have a percentage resolution of (1/255) × 100 = 0.39 % or simply an eight-bit resolution. A 12-bit D/A
converter would have a percentage resolution of (1/4095) × 100 = 0.0244 %. In general, for an n-bit
D/A converter, the percentage resolution is given by (1/2n − 1) × 100. The resolution in millivolts for
the two cases for a full-scale output of 5 V is approximately 20 mV (for an eight-bit converter) and
1.2 mV (for a 12-bit converter).

12.2.2 Accuracy

The accuracy of a D/A converter is the difference between the actual analogue output and the ideal
expected output when a given digital input is applied. Sources of error include the gain error (or
full-scale error), the offset error (or zero-scale error), nonlinearity errors and a drift of all these factors.
The gain error [Fig. 12.4(a)] is the difference between the actual and ideal output voltage, expressed
as a percentage of full-scale output. It is also expressed in terms of LSB. As an example, an accuracy
of ±0.1 % implies that the analogue output voltage may be off by as much as ±5 mV for a full-scale
output of 5 V throughout the analogue output voltage range. The offset error is the error at analogue
zero [Fig. 12.4(b)].

12.2.3 Conversion Speed or Settling Time

The conversion speed of a D/A converter is expressed in terms of its settling time. The settling time
is the time period that has elapsed for the analogue output to reach its final value within a specified
error band after a digital input code change has been effected. General-purpose D/A converters have
a settling time of several microseconds, while some of the high-speed D/A converters have a settling

Ideal
Actual

A
na

lo
g

ou
tp

ut

Digital Input

Gain
Error

(a)

Figure 12.4 (a) Gain error and (b) offset error.

478 Digital Electronics

Offset Error

Digital Input

Actual

Ideal

A
na

lo
g

ou
tp

ut

(b)

Figure 12.4 (continued).

time of a few nanoseconds. The settling time specification for D/A converter type number AD 9768
from Analog Devices USA, for instance, is 5 ns.

12.2.4 Dynamic Range

This is the ratio of the largest output to the smallest output, excluding zero, expressed in dB. For
linear D/A converters it is 20 × log2n, which is approximately equal to 6n� For companding-type D/A
converters, discussed in Section 12.3, it is typically 66 or 72 dB.

12.2.5 Nonlinearity and Differential Nonlinearity

Nonlinearity (NL) is the maximum deviation of analogue output voltage from a straight line drawn
between the end points, expressed as a percentage of the full-scale range or in terms of LSBs.
Differential nonlinearity (DNL) is the worst-case deviation of any adjacent analogue outputs from the
ideal one-LSB step size.

12.2.6 Monotonocity

In an ideal D/A converter, the analogue output should increase by an identical step size for every
one-LSB increment in the digital input word. When the input of such a converter is fed from the output
of a counter, the converter output will be a perfect staircase waveform, as shown in Fig. 12.5. In such
cases, the converter is said to be exhibiting perfect monotonocity. A D/A converter is considered as
monotonic if its analogue output either increases or remains the same but does not decrease as the
digital input code advances in one-LSB steps. If the DNL error of the converter is less than or equal
to twice its worst-case nonlinearity error, it guarantees monotonocity.

Data Conversion Circuits – D/A and A/D Converters 479

D/A
Converter

Counter

Digital I/P{ Analog
O/P

Figure 12.5 Monotonocity in a D/A converter.

12.3 Types of D/A Converter
The D/A converters discussed in this section include the following:

1. Multiplying-type D/A converters.
2. Bipolar-output D/A converters.
3. Companding D/A converters.

12.3.1 Multiplying D/A Converters

In a multiplying-type D/A converter, the converter multiplies an analogue reference by the digital
input. Figure 12.6 shows the circuit representation. Some D/A converters can multiply only positive
digital words by a positive reference. This is known as single quadrant (QUAD-I) operation. Two-
quadrant operation (QUAD-I and QUAD-III) can be achieved in a D/A converter by configuring
the output for bipolar operation. This is accomplished by offsetting the output by a negative MSB
(equal to the analogue output of 1/2 of the full-scale range) so that the MSB becomes the sign bit.

Analog
Output

D/A
ConverterRef.

Digital Input

Figure 12.6 Multiplying-type D/A converter.

480 Digital Electronics

Some D/A converters even provide four-quadrant operation by allowing the use of both positive and
negative reference. Multiplying D/A converters are particularly useful when we are looking for digitally
programmable attenuation of an analogue input signal.

12.3.2 Bipolar-Output D/A Converters

In bipolar-output D/A converters the analogue output signal range includes both positive and negative
values. The transfer characteristics of an ideal two-quadrant bipolar-output D/A converter are shown
in Fig. 12.7.

12.3.3 Companding D/A Converters

Companding-type D/A converters are so constructed that the more significant bits of the digital input
have a larger than binary relationship to the less significant bits. This decreases the resolution of
the more significant bits, which in turn increases the analogue signal range. The effect of this is to
compress more data into more significant bits.

12.4 Modes of Operation
D/A converters are usually operated in either of the following two modes of operation:

1. Current steering mode.
2. Voltage switching mode.

12.4.1 Current Steering Mode of Operation

In the current steering mode of operation of a D/A converter, the analogue output is a current equal to
the product of a reference voltage and a fractional binary value D of the input digital word. D is equal
to the sum of fractional binary values of different bits in the digital word. Also, fractional binary values
of different bits in an n-bit digital word starting from the LSB are 20/2n, 21/2n, 22/2n, � � � , 2n−1/2n.

Analog
O/P

+FS-FS

-FS

+FS

Digital
I/P

Figure 12.7 Bipolar-output D/A converter transfer characteristics.

Data Conversion Circuits – D/A and A/D Converters 481

2R

(Analog Ground)

R R R

2R 2R 2R

2R I/16

I/2 I/4 I/8 I/16

I
Vref

MSB LSB

Out-1

RF = R

Out-2

(Digital Ground)

−

+

Figure 12.8 Current steering mode of operation of a D/A converter.

The output current is often converted into a corresponding voltage using an external opamp wired
as a current-to-voltage converter. Figure 12.8 shows the circuit arrangement. The majority of D/A
converters in IC form have an in-built opamp that can be used for current-to-voltage conversion. For
the circuit arrangement of Fig. 12.8, if the feedback resistor RF equals the ladder resistance R, the
analogue output voltage at the opamp output is –(D�Vref).

The arrangement of the four-bit D/A converter of Fig. 12.8 can be conveniently used to explain the
operation of a D/A converter in the current steering mode. The R/2R ladder network divides the input
current I due to a reference voltage Vref applied at the reference voltage input of the D/A converter
into binary weighted currents, as shown. These currents are then steered to either the output designated
Out-1 or Out-2 by the current steering switches. The positions of these current steering switches are
controlled by the digital input word. A logic ‘1’ steers the corresponding current to Out-1, whereas a
logic ‘0’ steers it to Out-2. For instance, a logic ‘1’ in the MSB position will steer the current I/2 to
Out-1. A logic ‘0’ steers it to Out-2, which is the ground terminal. In the four-bit converter of Fig. 12.8,
the analogue output current (or voltage) will be maximum for a digital input of 1111. The analogue
output current in this case will be I/2 +I/4 +I/8 + I/16 = (15/16)I . The analogue output voltage will
be (−15/16)IRF = (−15/16)IR. Also, I = Vref/R as the equivalent resistance of the ladder network
across Vref is also R� The analogue output voltage is then [(−15/16)(Vref�/R] ×R = (−15/16)Vref �
Here, 15/16 is nothing but the fractional binary value of digital input 1111. In general, the maximum
analogue output voltage is given by −�1−2−n� × Vref , where n is the number of bits in the input digital
word.

12.4.2 Voltage Switching Mode of Operation

In the voltage switching mode of operation of a R/2R ladder type D/A converter, the reference voltage
is applied to the Out-1 terminal and the output is taken from the reference voltage terminal. Out-2 is
joined to analogue ground. Figure 12.9 shows a four-bit D/A converter of the R/2R ladder type in

	Front Matter
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

